#ifndef marshall_h
#define marshall_h
-#include <iostream>
-#include <sstream>
-#include <string>
-#include <vector>
-#include <map>
-#include <stdlib.h>
-#include <string.h>
+#include "types.h"
+#include <cstring>
#include <cstddef>
-#include <inttypes.h>
-#include "lang/verify.h"
+#include <cinttypes>
using proc_t = uint32_t;
using status_t = int32_t;
//size of initial buffer allocation
#define DEFAULT_RPC_SZ 1024
-#define RPC_HEADER_SZ (std::max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+#define RPC_HEADER_SZ (max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+
+struct pass { template <typename... Args> inline pass(Args&&...) {} };
class marshall {
private:
inline void reserve(size_t n) {
if((index_+n) > capacity_){
- capacity_ += std::max(capacity_, n);
+ capacity_ += max(capacity_, n);
VERIFY (buf_ != NULL);
buf_ = (char *)realloc(buf_, capacity_);
VERIFY(buf_);
}
}
public:
- struct pass { template <typename... Args> inline pass(Args&&...) {} };
-
template <typename... Args>
-
marshall(const Args&... args) {
buf_ = (char *) malloc(sizeof(char)*DEFAULT_RPC_SZ);
VERIFY(buf_);
}
// Return the current content (excluding header) as a string
- std::string get_content() {
- return std::string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
+ string get_content() {
+ return string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
}
// Return the current content (excluding header) as a string
- std::string str() {
+ string str() {
return get_content();
}
marshall& operator<<(marshall &, uint16_t);
marshall& operator<<(marshall &, int16_t);
marshall& operator<<(marshall &, uint64_t);
-marshall& operator<<(marshall &, const std::string &);
-
-template <class A, typename I=void>
-struct is_enumerable : std::false_type {};
+marshall& operator<<(marshall &, const string &);
-template<class A> struct is_enumerable<A,
- decltype(std::declval<A&>().cbegin(), std::declval<A&>().cend(), void())
-> : std::true_type {};
-
-template <class A> typename std::enable_if<is_enumerable<A>::value, marshall>::type &
+template <class A> typename enable_if<is_iterable<A>::value, marshall>::type &
operator<<(marshall &m, const A &x) {
m << (unsigned int) x.size();
for (const auto &a : x)
}
template <class A, class B> marshall &
-operator<<(marshall &m, const std::pair<A,B> &d) {
+operator<<(marshall &m, const pair<A,B> &d) {
return m << d.first << d.second;
}
template<typename E>
-using enum_type_t = typename std::enable_if<std::is_enum<E>::value, typename std::underlying_type<E>::type>::type;
+using enum_type_t = typename enable_if<is_enum<E>::value, typename underlying_type<E>::type>::type;
template<typename E> constexpr inline enum_type_t<E> from_enum(E e) noexcept { return (enum_type_t<E>)e; }
template<typename E> constexpr inline E to_enum(enum_type_t<E> value) noexcept { return (E)value; }
-template <class E> typename std::enable_if<std::is_enum<E>::value, marshall>::type &
+template <class E> typename enable_if<is_enum<E>::value, marshall>::type &
operator<<(marshall &m, E e) {
return m << from_enum(e);
}
unmarshall& operator>>(unmarshall &, size_t &);
unmarshall& operator>>(unmarshall &, uint64_t &);
unmarshall& operator>>(unmarshall &, int64_t &);
-unmarshall& operator>>(unmarshall &, std::string &);
-template <class E> typename std::enable_if<std::is_enum<E>::value, unmarshall>::type &
+unmarshall& operator>>(unmarshall &, string &);
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
operator>>(unmarshall &u, E &e);
class unmarshall {
public:
unmarshall(): buf_(NULL),sz_(0),index_(0),ok_(false) {}
unmarshall(char *b, size_t sz): buf_(b),sz_(sz),index_(),ok_(true) {}
- unmarshall(const std::string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
+ unmarshall(const string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
{
//take the content which does not exclude a RPC header from a string
take_content(s);
void take_in(unmarshall &another);
//take the content which does not exclude a RPC header from a string
- void take_content(const std::string &s) {
+ void take_content(const string &s) {
sz_ = s.size()+RPC_HEADER_SZ;
buf_ = (char *)realloc(buf_,sz_);
VERIFY(buf_);
bool okdone() const { return ok_ && index_ == sz_; }
uint8_t rawbyte();
- void rawbytes(std::string &s, size_t n);
+ void rawbytes(string &s, size_t n);
template <class T> void rawbytes(T &t);
size_t ind() { return index_;}
}
};
-template <class A> typename std::enable_if<is_enumerable<A>::value, unmarshall>::type &
+template <class A> typename enable_if<is_iterable<A>::value, unmarshall>::type &
operator>>(unmarshall &u, A &x) {
unsigned n = u.grab<unsigned>();
x.clear();
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::map<A,B> &x) {
+operator>>(unmarshall &u, map<A,B> &x) {
unsigned n = u.grab<unsigned>();
x.clear();
while (n--)
- x.emplace(u.grab<std::pair<A,B>>());
+ x.emplace(u.grab<pair<A,B>>());
return u;
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::pair<A,B> &d) {
+operator>>(unmarshall &u, pair<A,B> &d) {
return u >> d.first >> d.second;
}
-template <class E> typename std::enable_if<std::is_enum<E>::value, unmarshall>::type &
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
operator>>(unmarshall &u, E &e) {
e = to_enum<E>(u.grab<enum_type_t<E>>());
return u;
}
-typedef std::function<int(unmarshall &, marshall &)> handler;
+typedef function<int(unmarshall &, marshall &)> handler;
//
// Automatic marshalling wrappers for RPC handlers
// C++11 does neither of these two things for us:
// 1) Declare variables using a parameter pack expansion, like so
// Args ...args;
-// 2) Call a function with a std::tuple of the arguments it expects
+// 2) Call a function with a tuple of the arguments it expects
//
// We implement an 'invoke' function for functions of the RPC handler
// signature, i.e. int(R & r, const Args...)
// One for function pointers...
template <class F, class R, class RV, class args_type, size_t ...Indices>
-typename std::enable_if<!std::is_member_function_pointer<F>::value, RV>::type
+typename enable_if<!is_member_function_pointer<F>::value, RV>::type
invoke(RV, F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
- return f(r, std::move(std::get<Indices>(t))...);
+ return f(r, move(get<Indices>(t))...);
}
// And one for pointers to member functions...
template <class F, class C, class RV, class R, class args_type, size_t ...Indices>
-typename std::enable_if<std::is_member_function_pointer<F>::value, RV>::type
+typename enable_if<is_member_function_pointer<F>::value, RV>::type
invoke(RV, F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
- return (c->*f)(r, std::move(std::get<Indices>(t))...);
+ return (c->*f)(r, move(get<Indices>(t))...);
}
// The class marshalled_func_imp uses partial template specialization to
// template parameters running from 0 up to (# args) - 1.
using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
// This type definition represents storage for f's unmarshalled
- // arguments. std::decay is (most notably) stripping off const
+ // arguments. decay is (most notably) stripping off const
// qualifiers.
- using ArgsStorage = std::tuple<typename std::decay<Args>::type...>;
- // Allocate a handler (i.e. std::function) to hold the lambda
+ using ArgsStorage = tuple<typename decay<Args>::type...>;
+ // Allocate a handler (i.e. function) to hold the lambda
// which will unmarshall RPCs and call f.
return new handler([=](unmarshall &u, marshall &m) -> RV {
// Unmarshall each argument with the correct type and store the
// result in a tuple.
- ArgsStorage t = {u.grab<typename std::decay<Args>::type>()...};
+ ArgsStorage t = {u.grab<typename decay<Args>::type>()...};
// Verify successful unmarshalling of the entire input stream.
if (!u.okdone())
return (RV)ErrorHandler::unmarshall_args_failure();
public marshalled_func_imp<F, C, RV(Args...), ErrorHandler> {};
template <class F, class ErrorHandler, class Signature>
-struct marshalled_func<F, ErrorHandler, std::function<Signature>> :
+struct marshalled_func<F, ErrorHandler, function<Signature>> :
public marshalled_func_imp<F, void, Signature, ErrorHandler> {};
+template <class ...Args, size_t ...Indices> unmarshall &
+tuple_unmarshall_imp(unmarshall & u, tuple<Args &...> t, tuple_indices<Indices...>) {
+ (void)pass{(u >> get<Indices>(t))...};
+ return u;
+}
+
+template <class... Args> unmarshall &
+operator>>(unmarshall & u, tuple<Args &...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_unmarshall_imp(u, t, Indices());
+}
+
+template <class ...Args, size_t ...Indices> marshall &
+tuple_marshall_imp(marshall & m, tuple<Args...> & t, tuple_indices<Indices...>) {
+ (void)pass{(m << get<Indices>(t))...};
+ return m;
+}
+
+template <class... Args> marshall &
+operator<<(marshall & m, tuple<Args...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_marshall_imp(m, t, Indices());
+}
+
+// for structs or classes containing a MEMBERS declaration
+#define MARSHALLABLE(_c_) \
+inline unmarshall & operator>>(unmarshall &u, _c_ &a) { return u >> a._tuple_(); } \
+inline marshall & operator<<(marshall &m, _c_ a) { return m << a._tuple_(); }
+
#endif