#ifndef marshall_h
#define marshall_h
-#include <iostream>
-#include <sstream>
-#include <string>
-#include <vector>
-#include <map>
-#include <stdlib.h>
-#include <string.h>
-#include <cstddef>
-#include <inttypes.h>
-#include "lang/verify.h"
+#include "types.h"
+
+// for structs or classes containing a MEMBERS declaration
+class marshall;
+class unmarshall;
+#define FORWARD_MARSHALLABLE(_c_) \
+extern unmarshall & operator>>(unmarshall &u, typename remove_reference<_c_>::type &a); \
+extern marshall & operator<<(marshall &m, const _c_ a);
+#define MARSHALLABLE(_c_) \
+inline unmarshall & operator>>(unmarshall &u, _c_ &a) { return u >> a._tuple_(); } \
+inline marshall & operator<<(marshall &m, const _c_ a) { return m << a._tuple_(); }
+
+// for plain old data
+#define MARSHALL_RAW_NETWORK_ORDER_AS(_c_, _d_) \
+marshall & operator<<(marshall &m, _c_ x) { _d_ y = hton((_d_)x); m.rawbytes(&y, sizeof(_d_)); return m; } \
+unmarshall & operator>>(unmarshall &u, _c_ &x) { _d_ y; u.rawbytes(&y, sizeof(_d_)); x = (_c_)ntoh(y); return u; }
+
+#define MARSHALL_RAW_NETWORK_ORDER(_c_) MARSHALL_RAW_NETWORK_ORDER_AS(_c_, _c_)
using proc_t = uint32_t;
using status_t = int32_t;
struct request_header {
- request_header(int x=0, proc_t p=0, unsigned c=0, unsigned s=0, int xi=0) :
- xid(x), proc(p), clt_nonce(c), srv_nonce(s), xid_rep(xi) {}
int xid;
proc_t proc;
unsigned int clt_nonce;
unsigned int srv_nonce;
int xid_rep;
+
+ MEMBERS(xid, proc, clt_nonce, srv_nonce, xid_rep)
};
+FORWARD_MARSHALLABLE(request_header)
+ENDIAN_SWAPPABLE(request_header)
+
struct reply_header {
- reply_header(int x=0, int r=0): xid(x), ret(r) {}
int xid;
int ret;
-};
-
-template<class T> inline T hton(T t);
-constexpr union { uint32_t i; uint8_t is_little_endian; } endianness{1};
-
-template<> inline uint8_t hton(uint8_t t) { return t; }
-template<> inline int8_t hton(int8_t t) { return t; }
-template<> inline uint16_t hton(uint16_t t) { return htons(t); }
-template<> inline int16_t hton(int16_t t) { return (int16_t)htons((uint16_t)t); }
-template<> inline uint32_t hton(uint32_t t) { return htonl(t); }
-template<> inline int32_t hton(int32_t t) { return (int32_t)htonl((uint32_t)t); }
-template<> inline uint64_t hton(uint64_t t) {
- if (!endianness.is_little_endian)
- return t;
- return (uint64_t)htonl((uint32_t)(t >> 32)) | ((uint64_t)htonl((uint32_t)t) << 32);
-}
-template<> inline int64_t hton(int64_t t) { return (int64_t)hton((uint64_t)t); }
-template<> inline request_header hton(request_header h) { return {hton(h.xid), hton(h.proc), hton(h.clt_nonce), hton(h.srv_nonce), hton(h.xid_rep)}; }
-template<> inline reply_header hton(reply_header h) { return {hton(h.xid), hton(h.ret)}; }
+ MEMBERS(xid, ret)
+};
-template <class T> inline T ntoh(T t) { return hton(t); }
+FORWARD_MARSHALLABLE(reply_header)
+ENDIAN_SWAPPABLE(reply_header)
typedef int rpc_sz_t;
-//size of initial buffer allocation
-#define DEFAULT_RPC_SZ 1024
-#define RPC_HEADER_SZ (std::max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+const size_t RPC_HEADER_SZ = max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t);
+const size_t DEFAULT_RPC_SZ = 1024; // size of initial buffer allocation
+
+// Template parameter pack expansion is not allowed in certain contexts, but
+// brace initializers (for instance, calls to constructors of empty structs)
+// are fair game.
+struct pass { template <typename... Args> inline pass(Args&&...) {} };
class marshall {
private:
- char *buf_; // Base of the raw bytes buffer (dynamically readjusted)
- size_t capacity_; // Capacity of the buffer
- size_t index_; // Read/write head position
+ string buf_ = string(DEFAULT_RPC_SZ, 0); // Raw bytes buffer
+ size_t index_ = RPC_HEADER_SZ; // Read/write head position
inline void reserve(size_t n) {
- if((index_+n) > capacity_){
- capacity_ += std::max(capacity_, n);
- VERIFY (buf_ != NULL);
- buf_ = (char *)realloc(buf_, capacity_);
- VERIFY(buf_);
- }
+ if (index_+n > buf_.size())
+ buf_.resize(index_+n);
}
public:
- struct pass { template <typename... Args> inline pass(Args&&...) {} };
-
template <typename... Args>
-
marshall(const Args&... args) {
- buf_ = (char *) malloc(sizeof(char)*DEFAULT_RPC_SZ);
- VERIFY(buf_);
- capacity_ = DEFAULT_RPC_SZ;
- index_ = RPC_HEADER_SZ;
(void)pass{(*this << args)...};
}
- ~marshall() {
- if (buf_)
- free(buf_);
- }
-
- size_t size() { return index_;}
- char *cstr() { return buf_;}
- const char *cstr() const { return buf_;}
-
- void rawbyte(uint8_t x) {
- reserve(1);
- buf_[index_++] = (int8_t)x;
- }
-
- void rawbytes(const char *p, size_t n) {
+ void rawbytes(const void *p, size_t n) {
reserve(n);
- memcpy(buf_+index_, p, n);
+ copy((char *)p, (char *)p+n, &buf_[index_]);
index_ += n;
}
- // Return the current content (excluding header) as a string
- std::string get_content() {
- return std::string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
- }
-
- // Return the current content (excluding header) as a string
- std::string str() {
- return get_content();
- }
-
- void pack_req_header(const request_header &h);
- void pack_reply_header(const reply_header &h);
-
- void take_buf(char **b, size_t *s) {
- *b = buf_;
- *s = index_;
- buf_ = NULL;
- index_ = 0;
- return;
+ // with header
+ operator string () const { return buf_.substr(0,index_); }
+ // without header
+ string content() { return buf_.substr(RPC_HEADER_SZ,index_-RPC_HEADER_SZ); }
+
+ template <class T>
+ void pack_header(const T &h) {
+ VERIFY(sizeof(T)+sizeof(rpc_sz_t) <= RPC_HEADER_SZ);
+ size_t saved_sz = index_;
+ index_ = sizeof(rpc_sz_t); // first 4 bytes hold length field
+ *this << h;
+ index_ = saved_sz;
}
};
-marshall& operator<<(marshall &, bool);
-marshall& operator<<(marshall &, uint32_t);
-marshall& operator<<(marshall &, int32_t);
-marshall& operator<<(marshall &, uint8_t);
-marshall& operator<<(marshall &, int8_t);
-marshall& operator<<(marshall &, uint16_t);
-marshall& operator<<(marshall &, int16_t);
-marshall& operator<<(marshall &, uint64_t);
-marshall& operator<<(marshall &, const std::string &);
-
-template <class A, typename I=void>
-struct is_enumerable : std::false_type {};
-
-template<class A> struct is_enumerable<A,
- decltype(std::declval<A&>().cbegin(), std::declval<A&>().cend(), void())
-> : std::true_type {};
-
-template <class A> typename std::enable_if<is_enumerable<A>::value, marshall>::type &
+FORWARD_MARSHALLABLE(bool);
+FORWARD_MARSHALLABLE(uint8_t);
+FORWARD_MARSHALLABLE(int8_t);
+FORWARD_MARSHALLABLE(uint16_t);
+FORWARD_MARSHALLABLE(int16_t);
+FORWARD_MARSHALLABLE(uint32_t);
+FORWARD_MARSHALLABLE(int32_t);
+FORWARD_MARSHALLABLE(size_t);
+FORWARD_MARSHALLABLE(uint64_t);
+FORWARD_MARSHALLABLE(int64_t);
+FORWARD_MARSHALLABLE(string &);
+
+template <class A> typename enable_if<is_iterable<A>::value, marshall>::type &
operator<<(marshall &m, const A &x) {
- m << (unsigned int) x.size();
+ m << (unsigned int)x.size();
for (const auto &a : x)
m << a;
return m;
}
template <class A, class B> marshall &
-operator<<(marshall &m, const std::pair<A,B> &d) {
+operator<<(marshall &m, const pair<A,B> &d) {
return m << d.first << d.second;
}
template<typename E>
-using enum_type_t = typename std::enable_if<std::is_enum<E>::value, typename std::underlying_type<E>::type>::type;
+using enum_type_t = typename enable_if<is_enum<E>::value, typename underlying_type<E>::type>::type;
template<typename E> constexpr inline enum_type_t<E> from_enum(E e) noexcept { return (enum_type_t<E>)e; }
template<typename E> constexpr inline E to_enum(enum_type_t<E> value) noexcept { return (E)value; }
-template <class E> typename std::enable_if<std::is_enum<E>::value, marshall>::type &
+template <class E> typename enable_if<is_enum<E>::value, marshall>::type &
operator<<(marshall &m, E e) {
return m << from_enum(e);
}
-class unmarshall;
-
-unmarshall& operator>>(unmarshall &, bool &);
-unmarshall& operator>>(unmarshall &, uint8_t &);
-unmarshall& operator>>(unmarshall &, int8_t &);
-unmarshall& operator>>(unmarshall &, uint16_t &);
-unmarshall& operator>>(unmarshall &, int16_t &);
-unmarshall& operator>>(unmarshall &, uint32_t &);
-unmarshall& operator>>(unmarshall &, int32_t &);
-unmarshall& operator>>(unmarshall &, size_t &);
-unmarshall& operator>>(unmarshall &, uint64_t &);
-unmarshall& operator>>(unmarshall &, int64_t &);
-unmarshall& operator>>(unmarshall &, std::string &);
-template <class E> typename std::enable_if<std::is_enum<E>::value, unmarshall>::type &
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
operator>>(unmarshall &u, E &e);
class unmarshall {
private:
- char *buf_;
- size_t sz_;
- size_t index_;
- bool ok_;
-
- inline bool ensure(size_t n);
- public:
- unmarshall(): buf_(NULL),sz_(0),index_(0),ok_(false) {}
- unmarshall(char *b, size_t sz): buf_(b),sz_(sz),index_(),ok_(true) {}
- unmarshall(const std::string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
- {
- //take the content which does not exclude a RPC header from a string
- take_content(s);
- }
- ~unmarshall() {
- if (buf_) free(buf_);
+ string buf_;
+ size_t index_ = 0;
+ bool ok_ = false;
+
+ inline bool ensure(size_t n) {
+ if (index_+n > buf_.size())
+ ok_ = false;
+ return ok_;
}
-
- //take contents from another unmarshall object
- void take_in(unmarshall &another);
-
- //take the content which does not exclude a RPC header from a string
- void take_content(const std::string &s) {
- sz_ = s.size()+RPC_HEADER_SZ;
- buf_ = (char *)realloc(buf_,sz_);
- VERIFY(buf_);
- index_ = RPC_HEADER_SZ;
- memcpy(buf_+index_, s.data(), s.size());
- ok_ = true;
+ public:
+ unmarshall() {}
+ unmarshall(const string &s, bool has_header)
+ : buf_(s),index_(RPC_HEADER_SZ) {
+ if (!has_header)
+ buf_.insert(0, RPC_HEADER_SZ, 0);
+ ok_ = (buf_.size() >= RPC_HEADER_SZ);
}
bool ok() const { return ok_; }
- char *cstr() { return buf_;}
- bool okdone() const { return ok_ && index_ == sz_; }
-
- uint8_t rawbyte();
- void rawbytes(std::string &s, size_t n);
- template <class T> void rawbytes(T &t);
-
- size_t ind() { return index_;}
- size_t size() { return sz_;}
- void take_buf(char **b, size_t *sz) {
- *b = buf_;
- *sz = sz_;
- sz_ = index_ = 0;
- buf_ = NULL;
- }
+ bool okdone() const { return ok_ && index_ == buf_.size(); }
- void unpack_req_header(request_header *h) {
- //the first 4-byte is for channel to fill size of pdu
- index_ = sizeof(rpc_sz_t);
- *this >> h->xid >> h->proc >> h->clt_nonce >> h->srv_nonce >> h->xid_rep;
- index_ = RPC_HEADER_SZ;
+ void rawbytes(void * t, size_t n) {
+ VERIFY(ensure(n));
+ copy(&buf_[index_], &buf_[index_+n], (char *)t);
+ index_ += n;
}
- void unpack_reply_header(reply_header *h) {
- //the first 4-byte is for channel to fill size of pdu
+ template <class T>
+ void unpack_header(T & h) {
+ // first 4 bytes hold length field
+ VERIFY(sizeof(T)+sizeof(rpc_sz_t) <= RPC_HEADER_SZ);
index_ = sizeof(rpc_sz_t);
- *this >> h->xid >> h->ret;
+ *this >> h;
index_ = RPC_HEADER_SZ;
}
- template <class A>
- inline A grab() {
- A a;
- *this >> a;
- return a;
- }
+ template <class T> inline T grab() { T t; *this >> t; return t; }
};
-template <class A> typename std::enable_if<is_enumerable<A>::value, unmarshall>::type &
+template <class A> typename enable_if<is_iterable<A>::value, unmarshall>::type &
operator>>(unmarshall &u, A &x) {
unsigned n = u.grab<unsigned>();
x.clear();
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::map<A,B> &x) {
+operator>>(unmarshall &u, map<A,B> &x) {
unsigned n = u.grab<unsigned>();
x.clear();
while (n--)
- x.emplace(u.grab<std::pair<A,B>>());
+ x.emplace(u.grab<pair<A,B>>());
return u;
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::pair<A,B> &d) {
+operator>>(unmarshall &u, pair<A,B> &d) {
return u >> d.first >> d.second;
}
-template <class E> typename std::enable_if<std::is_enum<E>::value, unmarshall>::type &
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
operator>>(unmarshall &u, E &e) {
e = to_enum<E>(u.grab<enum_type_t<E>>());
return u;
}
-typedef std::function<int(unmarshall &, marshall &)> handler;
+typedef function<int(unmarshall &, marshall &)> handler;
//
// Automatic marshalling wrappers for RPC handlers
// PAI 2013/09/19
// C++11 does neither of these two things for us:
// 1) Declare variables using a parameter pack expansion, like so
-// Args ...args;
-// 2) Call a function with a std::tuple of the arguments it expects
+// Args... args;
+// 2) Call a function with a tuple of the arguments it expects
//
// We implement an 'invoke' function for functions of the RPC handler
// signature, i.e. int(R & r, const Args...)
// 'invoke' as a parameter which will be ignored, but its type will force the
// compiler to specialize 'invoke' appropriately.
-// The following implementation of tuple_indices is redistributed under the MIT
-// License as an insubstantial portion of the LLVM compiler infrastructure.
-
-template <size_t...> struct tuple_indices {};
-template <size_t S, class IntTuple, size_t E> struct make_indices_imp;
-template <size_t S, size_t ...Indices, size_t E> struct make_indices_imp<S, tuple_indices<Indices...>, E> {
- typedef typename make_indices_imp<S+1, tuple_indices<Indices..., S>, E>::type type;
-};
-template <size_t E, size_t ...Indices> struct make_indices_imp<E, tuple_indices<Indices...>, E> {
- typedef tuple_indices<Indices...> type;
-};
-template <size_t E, size_t S=0> struct make_tuple_indices {
- typedef typename make_indices_imp<S, tuple_indices<>, E>::type type;
-};
-
// This class encapsulates the default response to runtime unmarshalling
// failures. The templated wrappers below may optionally use a different
// class.
// One for function pointers...
-template <class F, class R, class RV, class args_type, size_t ...Indices>
-typename std::enable_if<!std::is_member_function_pointer<F>::value, RV>::type
+template <class F, class R, class RV, class args_type, size_t... Indices>
+typename enable_if<!is_member_function_pointer<F>::value, RV>::type
invoke(RV, F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
- return f(r, std::move(std::get<Indices>(t))...);
+ return f(r, move(get<Indices>(t))...);
}
// And one for pointers to member functions...
-template <class F, class C, class RV, class R, class args_type, size_t ...Indices>
-typename std::enable_if<std::is_member_function_pointer<F>::value, RV>::type
+template <class F, class C, class RV, class R, class args_type, size_t... Indices>
+typename enable_if<is_member_function_pointer<F>::value, RV>::type
invoke(RV, F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
- return (c->*f)(r, std::move(std::get<Indices>(t))...);
+ return (c->*f)(r, move(get<Indices>(t))...);
}
// The class marshalled_func_imp uses partial template specialization to
// template parameters running from 0 up to (# args) - 1.
using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
// This type definition represents storage for f's unmarshalled
- // arguments. std::decay is (most notably) stripping off const
+ // arguments. decay is (most notably) stripping off const
// qualifiers.
- using ArgsStorage = std::tuple<typename std::decay<Args>::type...>;
- // Allocate a handler (i.e. std::function) to hold the lambda
+ using ArgsStorage = tuple<typename decay<Args>::type...>;
+ // Allocate a handler (i.e. function) to hold the lambda
// which will unmarshall RPCs and call f.
return new handler([=](unmarshall &u, marshall &m) -> RV {
// Unmarshall each argument with the correct type and store the
// result in a tuple.
- ArgsStorage t = {u.grab<typename std::decay<Args>::type>()...};
+ ArgsStorage t = {u.grab<typename decay<Args>::type>()...};
// Verify successful unmarshalling of the entire input stream.
if (!u.okdone())
return (RV)ErrorHandler::unmarshall_args_failure();
public marshalled_func_imp<F, C, RV(Args...), ErrorHandler> {};
template <class F, class ErrorHandler, class Signature>
-struct marshalled_func<F, ErrorHandler, std::function<Signature>> :
+struct marshalled_func<F, ErrorHandler, function<Signature>> :
public marshalled_func_imp<F, void, Signature, ErrorHandler> {};
+template <class... Args, size_t... Indices> unmarshall &
+tuple_unmarshall_imp(unmarshall & u, tuple<Args &...> t, tuple_indices<Indices...>) {
+ (void)pass{(u >> get<Indices>(t))...};
+ return u;
+}
+
+template <class... Args> unmarshall &
+operator>>(unmarshall & u, tuple<Args &...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_unmarshall_imp(u, t, Indices());
+}
+
+template <class... Args, size_t... Indices> marshall &
+tuple_marshall_imp(marshall & m, tuple<Args...> & t, tuple_indices<Indices...>) {
+ (void)pass{(m << get<Indices>(t))...};
+ return m;
+}
+
+template <class... Args> marshall &
+operator<<(marshall & m, tuple<Args...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_marshall_imp(m, t, Indices());
+}
+
+MARSHALLABLE(request_header)
+MARSHALLABLE(reply_header)
+
#endif