// One for function pointers...
template <class F, class R, class RV, class args_type, size_t... Indices>
-typename enable_if<!is_member_function_pointer<F>::value, RV>::type inline
+typename enable_if<!std::is_member_function_pointer<F>::value, RV>::type inline
invoke(RV, F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
- return f(r, get<Indices>(t)...);
+ return f(r, std::get<Indices>(t)...);
}
// And one for pointers to member functions...
template <class F, class C, class RV, class R, class args_type, size_t... Indices>
-typename enable_if<is_member_function_pointer<F>::value, RV>::type inline
+typename enable_if<std::is_member_function_pointer<F>::value, RV>::type inline
invoke(RV, F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
- return (c->*f)(r, get<Indices>(t)...);
+ return (c->*f)(r, std::get<Indices>(t)...);
}
// The class marshalled_func_imp uses partial template specialization to
// This type definition represents storage for f's unmarshalled
// arguments. decay is (most notably) stripping off const
// qualifiers.
- using ArgsStorage = tuple<typename decay<Args>::type...>;
+ using ArgsStorage = tuple<typename std::decay<Args>::type...>;
// Allocate a handler (i.e. function) to hold the lambda
// which will unmarshall RPCs and call f.
return new handler([=](unmarshall && u, marshall & m) -> RV {
// Unmarshall each argument with the correct type and store the
// result in a tuple.
- ArgsStorage t{u._grab<typename decay<Args>::type>()...};
+ ArgsStorage t{u._grab<typename std::decay<Args>::type>()...};
// Verify successful unmarshalling of the entire input stream.
if (!u.okdone())
return (RV)ErrorHandler::unmarshall_args_failure();