#ifndef marshall_h
#define marshall_h
-#include <iostream>
-#include <sstream>
-#include <string>
-#include <vector>
-#include <map>
-#include <stdlib.h>
-#include <string.h>
+#include "types.h"
+#include <cstring>
#include <cstddef>
-#include <inttypes.h>
-#include "lang/verify.h"
+#include <cinttypes>
+
+using proc_t = uint32_t;
+using status_t = int32_t;
struct request_header {
- request_header(int x=0, int p=0, int c=0, int s=0, int xi=0) :
+ request_header(int x=0, proc_t p=0, unsigned c=0, unsigned s=0, int xi=0) :
xid(x), proc(p), clt_nonce(c), srv_nonce(s), xid_rep(xi) {}
int xid;
- int proc;
+ proc_t proc;
unsigned int clt_nonce;
unsigned int srv_nonce;
int xid_rep;
- request_header hton() const {
- return {
- htonl(xid), htonl(proc), htonl(clt_nonce), htonl(srv_nonce), htonl(xid_rep)
- };
- }
};
struct reply_header {
reply_header(int x=0, int r=0): xid(x), ret(r) {}
int xid;
int ret;
- reply_header hton() const {
- return {
- htonl(xid), htonl(ret)
- };
- }
};
+template<class T> inline T hton(T t);
+
+constexpr union { uint32_t i; uint8_t is_little_endian; } endianness{1};
+
+template<> inline uint8_t hton(uint8_t t) { return t; }
+template<> inline int8_t hton(int8_t t) { return t; }
+template<> inline uint16_t hton(uint16_t t) { return htons(t); }
+template<> inline int16_t hton(int16_t t) { return (int16_t)htons((uint16_t)t); }
+template<> inline uint32_t hton(uint32_t t) { return htonl(t); }
+template<> inline int32_t hton(int32_t t) { return (int32_t)htonl((uint32_t)t); }
+template<> inline uint64_t hton(uint64_t t) {
+ if (!endianness.is_little_endian)
+ return t;
+ return (uint64_t)htonl((uint32_t)(t >> 32)) | ((uint64_t)htonl((uint32_t)t) << 32);
+}
+template<> inline int64_t hton(int64_t t) { return (int64_t)hton((uint64_t)t); }
+template<> inline request_header hton(request_header h) { return {hton(h.xid), hton(h.proc), hton(h.clt_nonce), hton(h.srv_nonce), hton(h.xid_rep)}; }
+template<> inline reply_header hton(reply_header h) { return {hton(h.xid), hton(h.ret)}; }
+
+template <class T> inline T ntoh(T t) { return hton(t); }
+
typedef int rpc_sz_t;
//size of initial buffer allocation
#define DEFAULT_RPC_SZ 1024
-#define RPC_HEADER_SZ (std::max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+#define RPC_HEADER_SZ (max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+
+struct pass { template <typename... Args> inline pass(Args&&...) {} };
class marshall {
private:
inline void reserve(size_t n) {
if((index_+n) > capacity_){
- capacity_ += std::max(capacity_, n);
+ capacity_ += max(capacity_, n);
VERIFY (buf_ != NULL);
buf_ = (char *)realloc(buf_, capacity_);
VERIFY(buf_);
}
}
public:
- struct pass { template <typename... Args> inline pass(Args&&...) {} };
-
template <typename... Args>
-
marshall(const Args&... args) {
buf_ = (char *) malloc(sizeof(char)*DEFAULT_RPC_SZ);
VERIFY(buf_);
free(buf_);
}
- int size() { return index_;}
+ size_t size() { return index_;}
char *cstr() { return buf_;}
const char *cstr() const { return buf_;}
- void rawbyte(unsigned char x) {
+ void rawbyte(uint8_t x) {
reserve(1);
- buf_[index_++] = x;
+ buf_[index_++] = (int8_t)x;
}
- void rawbytes(const char *p, int n) {
+ void rawbytes(const char *p, size_t n) {
reserve(n);
memcpy(buf_+index_, p, n);
index_ += n;
}
// Return the current content (excluding header) as a string
- std::string get_content() {
- return std::string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
+ string get_content() {
+ return string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
}
// Return the current content (excluding header) as a string
- std::string str() {
+ string str() {
return get_content();
}
void pack_req_header(const request_header &h);
void pack_reply_header(const reply_header &h);
- void take_buf(char **b, int *s) {
+ void take_buf(char **b, size_t *s) {
*b = buf_;
*s = index_;
buf_ = NULL;
};
marshall& operator<<(marshall &, bool);
-marshall& operator<<(marshall &, unsigned int);
-marshall& operator<<(marshall &, int);
-marshall& operator<<(marshall &, unsigned char);
-marshall& operator<<(marshall &, char);
-marshall& operator<<(marshall &, unsigned short);
-marshall& operator<<(marshall &, short);
-marshall& operator<<(marshall &, unsigned long long);
-marshall& operator<<(marshall &, const std::string &);
-
-template <class A> marshall &
+marshall& operator<<(marshall &, uint32_t);
+marshall& operator<<(marshall &, int32_t);
+marshall& operator<<(marshall &, uint8_t);
+marshall& operator<<(marshall &, int8_t);
+marshall& operator<<(marshall &, uint16_t);
+marshall& operator<<(marshall &, int16_t);
+marshall& operator<<(marshall &, uint64_t);
+marshall& operator<<(marshall &, const string &);
+
+template <class A> typename enable_if<is_iterable<A>::value, marshall>::type &
operator<<(marshall &m, const A &x) {
m << (unsigned int) x.size();
for (const auto &a : x)
}
template <class A, class B> marshall &
-operator<<(marshall &m, const std::pair<A,B> &d) {
- m << d.first;
- m << d.second;
- return m;
+operator<<(marshall &m, const pair<A,B> &d) {
+ return m << d.first << d.second;
+}
+
+template<typename E>
+using enum_type_t = typename enable_if<is_enum<E>::value, typename underlying_type<E>::type>::type;
+template<typename E> constexpr inline enum_type_t<E> from_enum(E e) noexcept { return (enum_type_t<E>)e; }
+template<typename E> constexpr inline E to_enum(enum_type_t<E> value) noexcept { return (E)value; }
+
+template <class E> typename enable_if<is_enum<E>::value, marshall>::type &
+operator<<(marshall &m, E e) {
+ return m << from_enum(e);
}
+class unmarshall;
+
+unmarshall& operator>>(unmarshall &, bool &);
+unmarshall& operator>>(unmarshall &, uint8_t &);
+unmarshall& operator>>(unmarshall &, int8_t &);
+unmarshall& operator>>(unmarshall &, uint16_t &);
+unmarshall& operator>>(unmarshall &, int16_t &);
+unmarshall& operator>>(unmarshall &, uint32_t &);
+unmarshall& operator>>(unmarshall &, int32_t &);
+unmarshall& operator>>(unmarshall &, size_t &);
+unmarshall& operator>>(unmarshall &, uint64_t &);
+unmarshall& operator>>(unmarshall &, int64_t &);
+unmarshall& operator>>(unmarshall &, string &);
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
+operator>>(unmarshall &u, E &e);
+
class unmarshall {
private:
char *buf_;
- int sz_;
- int index_;
+ size_t sz_;
+ size_t index_;
bool ok_;
inline bool ensure(size_t n);
public:
unmarshall(): buf_(NULL),sz_(0),index_(0),ok_(false) {}
- unmarshall(char *b, int sz): buf_(b),sz_(sz),index_(),ok_(true) {}
- unmarshall(const std::string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
+ unmarshall(char *b, size_t sz): buf_(b),sz_(sz),index_(),ok_(true) {}
+ unmarshall(const string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
{
//take the content which does not exclude a RPC header from a string
take_content(s);
void take_in(unmarshall &another);
//take the content which does not exclude a RPC header from a string
- void take_content(const std::string &s) {
+ void take_content(const string &s) {
sz_ = s.size()+RPC_HEADER_SZ;
buf_ = (char *)realloc(buf_,sz_);
VERIFY(buf_);
char *cstr() { return buf_;}
bool okdone() const { return ok_ && index_ == sz_; }
- unsigned int rawbyte();
- void rawbytes(std::string &s, size_t n);
+ uint8_t rawbyte();
+ void rawbytes(string &s, size_t n);
+ template <class T> void rawbytes(T &t);
- int ind() { return index_;}
- int size() { return sz_;}
- void unpack(int *); //non-const ref
- void take_buf(char **b, int *sz) {
+ size_t ind() { return index_;}
+ size_t size() { return sz_;}
+ void take_buf(char **b, size_t *sz) {
*b = buf_;
*sz = sz_;
sz_ = index_ = 0;
void unpack_req_header(request_header *h) {
//the first 4-byte is for channel to fill size of pdu
index_ = sizeof(rpc_sz_t);
- unpack(&h->xid);
- unpack(&h->proc);
- unpack((int *)&h->clt_nonce);
- unpack((int *)&h->srv_nonce);
- unpack(&h->xid_rep);
+ *this >> h->xid >> h->proc >> h->clt_nonce >> h->srv_nonce >> h->xid_rep;
index_ = RPC_HEADER_SZ;
}
void unpack_reply_header(reply_header *h) {
//the first 4-byte is for channel to fill size of pdu
index_ = sizeof(rpc_sz_t);
- unpack(&h->xid);
- unpack(&h->ret);
+ *this >> h->xid >> h->ret;
index_ = RPC_HEADER_SZ;
}
}
};
-template <class A> unmarshall & operator>>(unmarshall &u, A &x) {
+template <class A> typename enable_if<is_iterable<A>::value, unmarshall>::type &
+operator>>(unmarshall &u, A &x) {
unsigned n = u.grab<unsigned>();
x.clear();
while (n--)
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::map<A,B> &x) {
+operator>>(unmarshall &u, map<A,B> &x) {
unsigned n = u.grab<unsigned>();
x.clear();
while (n--)
- x.emplace(u.grab<std::pair<A,B>>());
+ x.emplace(u.grab<pair<A,B>>());
return u;
}
template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::pair<A,B> &d) {
+operator>>(unmarshall &u, pair<A,B> &d) {
return u >> d.first >> d.second;
}
-typedef std::function<int(unmarshall &, marshall &)> handler;
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
+operator>>(unmarshall &u, E &e) {
+ e = to_enum<E>(u.grab<enum_type_t<E>>());
+ return u;
+}
+
+typedef function<int(unmarshall &, marshall &)> handler;
//
// Automatic marshalling wrappers for RPC handlers
// C++11 does neither of these two things for us:
// 1) Declare variables using a parameter pack expansion, like so
// Args ...args;
-// 2) Call a function with a std::tuple of the arguments it expects
+// 2) Call a function with a tuple of the arguments it expects
//
// We implement an 'invoke' function for functions of the RPC handler
// signature, i.e. int(R & r, const Args...)
// One for function pointers...
-template <class F, class R, class args_type, size_t ...Indices>
-typename std::enable_if<!std::is_member_function_pointer<F>::value, int>::type
-invoke(F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
- return f(r, std::move(std::get<Indices>(t))...);
+template <class F, class R, class RV, class args_type, size_t ...Indices>
+typename enable_if<!is_member_function_pointer<F>::value, RV>::type
+invoke(RV, F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
+ return f(r, move(get<Indices>(t))...);
}
// And one for pointers to member functions...
-template <class F, class C, class R, class args_type, size_t ...Indices>
-typename std::enable_if<std::is_member_function_pointer<F>::value, int>::type
-invoke(F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
- return (c->*f)(r, std::move(std::get<Indices>(t))...);
+template <class F, class C, class RV, class R, class args_type, size_t ...Indices>
+typename enable_if<is_member_function_pointer<F>::value, RV>::type
+invoke(RV, F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
+ return (c->*f)(r, move(get<Indices>(t))...);
}
// The class marshalled_func_imp uses partial template specialization to
// the same pattern as Signature; this allows us to ignore the distinctions
// between various types of callable objects at this level of abstraction.
-template <class F, class C, class ErrorHandler, class R, class... Args>
-struct marshalled_func_imp<F, C, int(R&, Args...), ErrorHandler> {
+template <class F, class C, class ErrorHandler, class R, class RV, class... Args>
+struct marshalled_func_imp<F, C, RV(R&, Args...), ErrorHandler> {
static inline handler *wrap(F f, C *c=nullptr) {
// This type definition corresponds to an empty struct with
// template parameters running from 0 up to (# args) - 1.
using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
// This type definition represents storage for f's unmarshalled
- // arguments. std::decay is (most notably) stripping off const
+ // arguments. decay is (most notably) stripping off const
// qualifiers.
- using ArgsStorage = std::tuple<typename std::decay<Args>::type...>;
- // Allocate a handler (i.e. std::function) to hold the lambda
+ using ArgsStorage = tuple<typename decay<Args>::type...>;
+ // Allocate a handler (i.e. function) to hold the lambda
// which will unmarshall RPCs and call f.
- return new handler([=](unmarshall &u, marshall &m) -> int {
+ return new handler([=](unmarshall &u, marshall &m) -> RV {
// Unmarshall each argument with the correct type and store the
// result in a tuple.
- ArgsStorage t = {u.grab<typename std::decay<Args>::type>()...};
+ ArgsStorage t = {u.grab<typename decay<Args>::type>()...};
// Verify successful unmarshalling of the entire input stream.
if (!u.okdone())
- return ErrorHandler::unmarshall_args_failure();
+ return (RV)ErrorHandler::unmarshall_args_failure();
// Allocate space for the RPC response -- will be passed into the
// function as an lvalue reference.
R r;
// Perform the invocation. Note that Indices() calls the default
// constructor of the empty struct with the special template
// parameters.
- int b = invoke(f, c, r, t, Indices());
+ RV b = invoke(RV(), f, c, r, t, Indices());
// Marshall the response.
m << r;
// Make like a tree.
template <class Functor, class ErrorHandler=VerifyOnFailure,
class Signature=Functor> struct marshalled_func;
-template <class F, class ErrorHandler, class... Args>
-struct marshalled_func<F, ErrorHandler, int(*)(Args...)> :
- public marshalled_func_imp<F, void, int(Args...), ErrorHandler> {};
+template <class F, class ErrorHandler, class RV, class... Args>
+struct marshalled_func<F, ErrorHandler, RV(*)(Args...)> :
+ public marshalled_func_imp<F, void, RV(Args...), ErrorHandler> {};
-template <class F, class ErrorHandler, class C, class... Args>
-struct marshalled_func<F, ErrorHandler, int(C::*)(Args...)> :
- public marshalled_func_imp<F, C, int(Args...), ErrorHandler> {};
+template <class F, class ErrorHandler, class RV, class C, class... Args>
+struct marshalled_func<F, ErrorHandler, RV(C::*)(Args...)> :
+ public marshalled_func_imp<F, C, RV(Args...), ErrorHandler> {};
template <class F, class ErrorHandler, class Signature>
-struct marshalled_func<F, ErrorHandler, std::function<Signature>> :
+struct marshalled_func<F, ErrorHandler, function<Signature>> :
public marshalled_func_imp<F, void, Signature, ErrorHandler> {};
+template <class ...Args, size_t ...Indices> unmarshall &
+tuple_unmarshall_imp(unmarshall & u, tuple<Args &...> t, tuple_indices<Indices...>) {
+ (void)pass{(u >> get<Indices>(t))...};
+ return u;
+}
+
+template <class... Args> unmarshall &
+operator>>(unmarshall & u, tuple<Args &...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_unmarshall_imp(u, t, Indices());
+}
+
+template <class ...Args, size_t ...Indices> marshall &
+tuple_marshall_imp(marshall & m, tuple<Args...> & t, tuple_indices<Indices...>) {
+ (void)pass{(m << get<Indices>(t))...};
+ return m;
+}
+
+template <class... Args> marshall &
+operator<<(marshall & m, tuple<Args...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_marshall_imp(m, t, Indices());
+}
+
+// for structs or classes containing a MEMBERS declaration
+#define MARSHALLABLE(_c_) \
+inline unmarshall & operator>>(unmarshall &u, _c_ &a) { return u >> a._tuple_(); } \
+inline marshall & operator<<(marshall &m, _c_ a) { return m << a._tuple_(); }
+
#endif