#ifndef marshall_h
#define marshall_h
-#include <iostream>
-#include <sstream>
-#include <string>
-#include <vector>
-#include <map>
-#include <stdlib.h>
-#include <string.h>
-#include <cstddef>
-#include <inttypes.h>
-#include "lang/verify.h"
-
-struct request_header {
- request_header(int x=0, int p=0, int c=0, int s=0, int xi=0) :
- xid(x), proc(p), clt_nonce(c), srv_nonce(s), xid_rep(xi) {}
- int xid;
- int proc;
- unsigned int clt_nonce;
- unsigned int srv_nonce;
- int xid_rep;
- request_header hton() const {
- return {
- htonl(xid), htonl(proc), htonl(clt_nonce), htonl(srv_nonce), htonl(xid_rep)
- };
- }
-};
+#include "types.h"
+#include "rpc_protocol.h"
-struct reply_header {
- reply_header(int x=0, int r=0): xid(x), ret(r) {}
- int xid;
- int ret;
- reply_header hton() const {
- return {
- htonl(xid), htonl(ret)
- };
- }
-};
+class marshall;
+class unmarshall;
-typedef int rpc_sz_t;
-
-//size of initial buffer allocation
-#define DEFAULT_RPC_SZ 1024
-#define RPC_HEADER_SZ (std::max(sizeof(request_header), sizeof(reply_header)) + sizeof(rpc_sz_t))
+//
+// Marshall and unmarshall objects
+//
class marshall {
private:
- char *buf_; // Base of the raw bytes buffer (dynamically readjusted)
- size_t capacity_; // Capacity of the buffer
- size_t index_; // Read/write head position
-
- inline void reserve(size_t n) {
- if((index_+n) > capacity_){
- capacity_ += std::max(capacity_, n);
- VERIFY (buf_ != NULL);
- buf_ = (char *)realloc(buf_, capacity_);
- VERIFY(buf_);
- }
- }
- public:
- struct pass { template <typename... Args> inline pass(Args&&...) {} };
+ string buf_ = string(DEFAULT_RPC_SZ, 0); // Raw bytes buffer
+ size_t index_ = RPC_HEADER_SZ; // Read/write head position
+ public:
template <typename... Args>
-
marshall(const Args&... args) {
- buf_ = (char *) malloc(sizeof(char)*DEFAULT_RPC_SZ);
- VERIFY(buf_);
- capacity_ = DEFAULT_RPC_SZ;
- index_ = RPC_HEADER_SZ;
(void)pass{(*this << args)...};
}
- ~marshall() {
- if (buf_)
- free(buf_);
- }
-
- int size() { return index_;}
- char *cstr() { return buf_;}
- const char *cstr() const { return buf_;}
-
- void rawbyte(unsigned char x) {
- reserve(1);
- buf_[index_++] = x;
- }
-
- void rawbytes(const char *p, int n) {
- reserve(n);
- memcpy(buf_+index_, p, n);
+ void rawbytes(const void *p, size_t n) {
+ if (index_+n > buf_.size())
+ buf_.resize(index_+n);
+ copy((char *)p, (char *)p+n, &buf_[index_]);
index_ += n;
}
- // Return the current content (excluding header) as a string
- std::string get_content() {
- return std::string(buf_+RPC_HEADER_SZ,index_-RPC_HEADER_SZ);
- }
-
- // Return the current content (excluding header) as a string
- std::string str() {
- return get_content();
- }
-
- void pack_req_header(const request_header &h);
- void pack_reply_header(const reply_header &h);
-
- void take_buf(char **b, int *s) {
- *b = buf_;
- *s = index_;
- buf_ = NULL;
+ // with header
+ inline operator string() const { return buf_.substr(0,index_); }
+ // without header
+ inline string content() { return buf_.substr(RPC_HEADER_SZ,index_-RPC_HEADER_SZ); }
+
+ // letting S be a defaulted template parameter forces the compiler to
+ // delay looking up operator<<(marshall&, rpc_sz_t) until we define it
+ // (i.e. we define an operator for marshalling uint32_t)
+ template <class T, class S=rpc_sz_t> inline void
+ pack_header(const T & h) {
+ VERIFY(sizeof(T)+sizeof(S) <= RPC_HEADER_SZ);
+ size_t saved_sz = index_;
index_ = 0;
- return;
+ *this << (S)(saved_sz - sizeof(S)) << (T)h;
+ index_ = saved_sz;
}
};
-marshall& operator<<(marshall &, bool);
-marshall& operator<<(marshall &, unsigned int);
-marshall& operator<<(marshall &, int);
-marshall& operator<<(marshall &, unsigned char);
-marshall& operator<<(marshall &, char);
-marshall& operator<<(marshall &, unsigned short);
-marshall& operator<<(marshall &, short);
-marshall& operator<<(marshall &, unsigned long long);
-marshall& operator<<(marshall &, const std::string &);
-
-template <class A> marshall &
-operator<<(marshall &m, const A &x) {
- m << (unsigned int) x.size();
- for (const auto &a : x)
- m << a;
- return m;
-}
-
-template <class A, class B> marshall &
-operator<<(marshall &m, const std::pair<A,B> &d) {
- m << d.first;
- m << d.second;
- return m;
-}
-
class unmarshall {
private:
- char *buf_;
- int sz_;
- int index_;
- bool ok_;
+ string buf_;
+ size_t index_ = 0;
+ bool ok_ = false;
- inline bool ensure(size_t n);
public:
- unmarshall(): buf_(NULL),sz_(0),index_(0),ok_(false) {}
- unmarshall(char *b, int sz): buf_(b),sz_(sz),index_(),ok_(true) {}
- unmarshall(const std::string &s) : buf_(NULL),sz_(0),index_(0),ok_(false)
- {
- //take the content which does not exclude a RPC header from a string
- take_content(s);
- }
- ~unmarshall() {
- if (buf_) free(buf_);
- }
-
- //take contents from another unmarshall object
- void take_in(unmarshall &another);
-
- //take the content which does not exclude a RPC header from a string
- void take_content(const std::string &s) {
- sz_ = s.size()+RPC_HEADER_SZ;
- buf_ = (char *)realloc(buf_,sz_);
- VERIFY(buf_);
- index_ = RPC_HEADER_SZ;
- memcpy(buf_+index_, s.data(), s.size());
- ok_ = true;
+ unmarshall() {}
+ unmarshall(const string &s, bool has_header)
+ : buf_(s),index_(RPC_HEADER_SZ) {
+ if (!has_header)
+ buf_.insert(0, RPC_HEADER_SZ, 0);
+ ok_ = (buf_.size() >= RPC_HEADER_SZ);
}
bool ok() const { return ok_; }
- char *cstr() { return buf_;}
- bool okdone() const { return ok_ && index_ == sz_; }
-
- unsigned int rawbyte();
- void rawbytes(std::string &s, size_t n);
-
- int ind() { return index_;}
- int size() { return sz_;}
- void unpack(int *); //non-const ref
- void take_buf(char **b, int *sz) {
- *b = buf_;
- *sz = sz_;
- sz_ = index_ = 0;
- buf_ = NULL;
- }
+ bool okdone() const { return ok_ && index_ == buf_.size(); }
- void unpack_req_header(request_header *h) {
- //the first 4-byte is for channel to fill size of pdu
- index_ = sizeof(rpc_sz_t);
- unpack(&h->xid);
- unpack(&h->proc);
- unpack((int *)&h->clt_nonce);
- unpack((int *)&h->srv_nonce);
- unpack(&h->xid_rep);
- index_ = RPC_HEADER_SZ;
+ void rawbytes(void * t, size_t n) {
+ if (index_+n > buf_.size())
+ ok_ = false;
+ VERIFY(ok_);
+ copy(&buf_[index_], &buf_[index_+n], (char *)t);
+ index_ += n;
}
- void unpack_reply_header(reply_header *h) {
- //the first 4-byte is for channel to fill size of pdu
+ template <class T> void
+ unpack_header(T & h) {
+ VERIFY(sizeof(T)+sizeof(rpc_sz_t) <= RPC_HEADER_SZ);
+ // first 4 bytes hold length field
index_ = sizeof(rpc_sz_t);
- unpack(&h->xid);
- unpack(&h->ret);
+ *this >> h;
index_ = RPC_HEADER_SZ;
}
- template <class A>
- inline A grab() {
- A a;
- *this >> a;
- return a;
- }
+ template <class T> inline T grab() { T t; *this >> t; return t; }
};
-template <class A> unmarshall & operator>>(unmarshall &u, A &x) {
- unsigned n = u.grab<unsigned>();
- x.clear();
- while (n--)
- x.emplace_back(u.grab<typename A::value_type>());
- return u;
+//
+// Marshalling for plain old data
+//
+
+#define MARSHALL_RAW_NETWORK_ORDER_AS(_c_, _d_) \
+inline marshall & operator<<(marshall &m, _c_ x) { _d_ y = hton((_d_)x); m.rawbytes(&y, sizeof(_d_)); return m; } \
+inline unmarshall & operator>>(unmarshall &u, _c_ &x) { _d_ y; u.rawbytes(&y, sizeof(_d_)); x = (_c_)ntoh(y); return u; }
+
+#define MARSHALL_RAW_NETWORK_ORDER(_c_) MARSHALL_RAW_NETWORK_ORDER_AS(_c_, _c_)
+
+MARSHALL_RAW_NETWORK_ORDER_AS(bool, uint8_t)
+MARSHALL_RAW_NETWORK_ORDER(uint8_t)
+MARSHALL_RAW_NETWORK_ORDER(int8_t)
+MARSHALL_RAW_NETWORK_ORDER(uint16_t)
+MARSHALL_RAW_NETWORK_ORDER(int16_t)
+MARSHALL_RAW_NETWORK_ORDER(uint32_t)
+MARSHALL_RAW_NETWORK_ORDER(int32_t)
+MARSHALL_RAW_NETWORK_ORDER_AS(size_t, uint32_t)
+MARSHALL_RAW_NETWORK_ORDER(uint64_t)
+MARSHALL_RAW_NETWORK_ORDER(int64_t)
+
+//
+// Marshalling for tuples (used to implement marshalling for structs)
+//
+
+// In order to iterate over the tuple elements, we first need a template
+// parameter pack containing the tuple's indices. The function templates named
+// *_imp below accept an empty tag struct as their last argument, and use its
+// template arguments to index the tuple. The operator<< overloads instantiate
+// the appropriate tag struct to make this possible.
+
+template <class... Args, size_t... Indices> inline marshall &
+tuple_marshall_imp(marshall & m, tuple<Args...> & t, tuple_indices<Indices...>) {
+ // Note that brace initialization is used for the empty structure "pack",
+ // forcing the comma-separated expressions expanded from the parameter pack
+ // to be evaluated in order. Order matters because the elements must be
+ // serialized consistently! The empty struct resulting from construction
+ // is discarded.
+ (void)pass{(m << get<Indices>(t))...};
+ return m;
}
-template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::map<A,B> &x) {
- unsigned n = u.grab<unsigned>();
- x.clear();
- while (n--)
- x.emplace(u.grab<std::pair<A,B>>());
- return u;
+template <class... Args> marshall &
+operator<<(marshall & m, tuple<Args...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_marshall_imp(m, t, Indices());
}
-template <class A, class B> unmarshall &
-operator>>(unmarshall &u, std::pair<A,B> &d) {
- return u >> d.first >> d.second;
+template <class... Args, size_t... Indices> inline unmarshall &
+tuple_unmarshall_imp(unmarshall & u, tuple<Args &...> t, tuple_indices<Indices...>) {
+ (void)pass{(u >> get<Indices>(t))...};
+ return u;
}
-typedef std::function<int(unmarshall &, marshall &)> handler;
+template <class... Args> unmarshall &
+operator>>(unmarshall & u, tuple<Args &...> && t) {
+ using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
+ return tuple_unmarshall_imp(u, t, Indices());
+}
//
-// Automatic marshalling wrappers for RPC handlers
+// Marshalling for structs or classes containing a MEMBERS declaration
//
-// PAI 2013/09/19
-// C++11 does neither of these two things for us:
-// 1) Declare variables using a parameter pack expansion, like so
-// Args ...args;
-// 2) Call a function with a std::tuple of the arguments it expects
+// Implements struct marshalling via tuple marshalling of members.
+#define MARSHALLABLE(_c_) \
+inline unmarshall & operator>>(unmarshall &u, _c_ &a) { return u >> a._tuple_(); } \
+inline marshall & operator<<(marshall &m, const _c_ a) { return m << a._tuple_(); }
+
+// our first two marshallable structs...
+MARSHALLABLE(request_header)
+MARSHALLABLE(reply_header)
+
//
-// We implement an 'invoke' function for functions of the RPC handler
-// signature, i.e. int(R & r, const Args...)
+// Marshalling for STL containers
//
-// One thing we need in order to accomplish this is a way to cause the compiler
-// to specialize 'invoke' with a parameter pack containing a list of indices
-// for the elements of the tuple. This will allow us to call the underlying
-// function with the exploded contents of the tuple. The empty type
-// tuple_indices<size_t...> accomplishes this. It will be passed in to
-// 'invoke' as a parameter which will be ignored, but its type will force the
-// compiler to specialize 'invoke' appropriately.
-
-// The following implementation of tuple_indices is redistributed under the MIT
-// License as an insubstantial portion of the LLVM compiler infrastructure.
-
-template <size_t...> struct tuple_indices {};
-template <size_t S, class IntTuple, size_t E> struct make_indices_imp;
-template <size_t S, size_t ...Indices, size_t E> struct make_indices_imp<S, tuple_indices<Indices...>, E> {
- typedef typename make_indices_imp<S+1, tuple_indices<Indices..., S>, E>::type type;
-};
-template <size_t E, size_t ...Indices> struct make_indices_imp<E, tuple_indices<Indices...>, E> {
- typedef tuple_indices<Indices...> type;
-};
-template <size_t E, size_t S=0> struct make_tuple_indices {
- typedef typename make_indices_imp<S, tuple_indices<>, E>::type type;
-};
-
-// This class encapsulates the default response to runtime unmarshalling
-// failures. The templated wrappers below may optionally use a different
-// class.
-struct VerifyOnFailure {
- static inline int unmarshall_args_failure() {
- VERIFY(0);
- return 0;
- }
-};
+// this overload is visible for type A only if A::cbegin and A::cend exist
+template <class A> inline typename
+enable_if<is_const_iterable<A>::value, marshall>::type &
+operator<<(marshall &m, const A &x) {
+ m << (unsigned int)x.size();
+ for (const auto &a : x)
+ m << a;
+ return m;
+}
-// Here's the implementation of 'invoke'. It could be more general, but this
-// meets our needs.
+// visible for type A if A::emplace_back(a) makes sense
+template <class A> inline typename
+enable_if<supports_emplace_back<A>::value, unmarshall>::type &
+operator>>(unmarshall &u, A &x) {
+ unsigned n = u.grab<unsigned>();
+ x.clear();
+ while (n--)
+ x.emplace_back(u.grab<typename A::value_type>());
+ return u;
+}
-// One for function pointers...
+// std::pair<A, B>
+template <class A, class B> inline marshall &
+operator<<(marshall &m, const pair<A,B> &d) {
+ return m << d.first << d.second;
+}
-template <class F, class R, class args_type, size_t ...Indices>
-typename std::enable_if<!std::is_member_function_pointer<F>::value, int>::type
-invoke(F f, void *, R & r, args_type & t, tuple_indices<Indices...>) {
- return f(r, std::move(std::get<Indices>(t))...);
+template <class A, class B> inline unmarshall &
+operator>>(unmarshall &u, pair<A,B> &d) {
+ return u >> d.first >> d.second;
}
-// And one for pointers to member functions...
+// std::map<A, B>
+template <class A, class B> inline unmarshall &
+operator>>(unmarshall &u, map<A,B> &x) {
+ unsigned n = u.grab<unsigned>();
+ x.clear();
+ while (n--)
+ x.emplace(u.grab<pair<A,B>>());
+ return u;
+}
-template <class F, class C, class R, class args_type, size_t ...Indices>
-typename std::enable_if<std::is_member_function_pointer<F>::value, int>::type
-invoke(F f, C *c, R & r, args_type & t, tuple_indices<Indices...>) {
- return (c->*f)(r, std::move(std::get<Indices>(t))...);
+// std::string
+inline marshall & operator<<(marshall &m, const string &s) {
+ m << (uint32_t)s.size();
+ m.rawbytes(s.data(), s.size());
+ return m;
}
-// The class marshalled_func_imp uses partial template specialization to
-// implement the ::wrap static function. ::wrap takes a function pointer or a
-// pointer to a member function and returns a handler * object which
-// unmarshalls arguments, verifies successful unmarshalling, calls the supplied
-// function, and marshalls the response.
-
-template <class Functor, class Instance, class Signature,
- class ErrorHandler=VerifyOnFailure> struct marshalled_func_imp;
-
-// Here we specialize on the Signature template parameter to obtain the list of
-// argument types. Note that we do not assume that the Functor parameter has
-// the same pattern as Signature; this allows us to ignore the distinctions
-// between various types of callable objects at this level of abstraction.
-
-template <class F, class C, class ErrorHandler, class R, class... Args>
-struct marshalled_func_imp<F, C, int(R&, Args...), ErrorHandler> {
- static inline handler *wrap(F f, C *c=nullptr) {
- // This type definition corresponds to an empty struct with
- // template parameters running from 0 up to (# args) - 1.
- using Indices = typename make_tuple_indices<sizeof...(Args)>::type;
- // This type definition represents storage for f's unmarshalled
- // arguments. std::decay is (most notably) stripping off const
- // qualifiers.
- using ArgsStorage = std::tuple<typename std::decay<Args>::type...>;
- // Allocate a handler (i.e. std::function) to hold the lambda
- // which will unmarshall RPCs and call f.
- return new handler([=](unmarshall &u, marshall &m) -> int {
- // Unmarshall each argument with the correct type and store the
- // result in a tuple.
- ArgsStorage t = {u.grab<typename std::decay<Args>::type>()...};
- // Verify successful unmarshalling of the entire input stream.
- if (!u.okdone())
- return ErrorHandler::unmarshall_args_failure();
- // Allocate space for the RPC response -- will be passed into the
- // function as an lvalue reference.
- R r;
- // Perform the invocation. Note that Indices() calls the default
- // constructor of the empty struct with the special template
- // parameters.
- int b = invoke(f, c, r, t, Indices());
- // Marshall the response.
- m << r;
- // Make like a tree.
- return b;
- });
+inline unmarshall & operator>>(unmarshall &u, string &s) {
+ uint32_t sz = u.grab<uint32_t>();
+ if (u.ok()) {
+ s.resize(sz);
+ u.rawbytes(&s[0], sz);
}
-};
-
-// More partial template specialization shenanigans to reduce the number of
-// parameters which must be provided explicitly and to support a few common
-// callable types. C++11 doesn't allow partial function template
-// specialization, so we use classes (structs).
-
-template <class Functor, class ErrorHandler=VerifyOnFailure,
- class Signature=Functor> struct marshalled_func;
+ return u;
+}
-template <class F, class ErrorHandler, class... Args>
-struct marshalled_func<F, ErrorHandler, int(*)(Args...)> :
- public marshalled_func_imp<F, void, int(Args...), ErrorHandler> {};
+//
+// Marshalling for strongly-typed enums
+//
-template <class F, class ErrorHandler, class C, class... Args>
-struct marshalled_func<F, ErrorHandler, int(C::*)(Args...)> :
- public marshalled_func_imp<F, C, int(Args...), ErrorHandler> {};
+template <class E> typename enable_if<is_enum<E>::value, marshall>::type &
+operator<<(marshall &m, E e) {
+ return m << from_enum(e);
+}
-template <class F, class ErrorHandler, class Signature>
-struct marshalled_func<F, ErrorHandler, std::function<Signature>> :
- public marshalled_func_imp<F, void, Signature, ErrorHandler> {};
+template <class E> typename enable_if<is_enum<E>::value, unmarshall>::type &
+operator>>(unmarshall &u, E &e) {
+ e = to_enum<E>(u.grab<enum_type_t<E>>());
+ return u;
+}
#endif