2 // Replicated state machine implementation with a primary and several
3 // backups. The primary receives requests, assigns each a view stamp (a
4 // vid, and a sequence number) in the order of reception, and forwards
5 // them to all backups. A backup executes requests in the order that
6 // the primary stamps them and replies with an OK to the primary. The
7 // primary executes the request after it receives OKs from all backups,
8 // and sends the reply back to the client.
10 // The config module will tell the RSM about a new view. If the
11 // primary in the previous view is a member of the new view, then it
12 // will stay the primary. Otherwise, the smallest numbered node of
13 // the previous view will be the new primary. In either case, the new
14 // primary will be a node from the previous view. The configuration
15 // module constructs the sequence of views for the RSM and the RSM
16 // ensures there will be always one primary, who was a member of the
19 // When a new node starts, the recovery thread is in charge of joining
20 // the RSM. It will collect the internal RSM state from the primary;
21 // the primary asks the config module to add the new node and returns
22 // to the joining the internal RSM state (e.g., paxos log). Since
23 // there is only one primary, all joins happen in well-defined total
26 // The recovery thread also runs during a view change (e.g, when a node
27 // has failed). After a failure some of the backups could have
28 // processed a request that the primary has not, but those results are
29 // not visible to clients (since the primary responds). If the
30 // primary of the previous view is in the current view, then it will
31 // be the primary and its state is authoritive: the backups download
32 // from the primary the current state. A primary waits until all
33 // backups have downloaded the state. Once the RSM is in sync, the
34 // primary accepts requests again from clients. If one of the backups
35 // is the new primary, then its state is authoritative. In either
36 // scenario, the next view uses a node as primary that has the state
37 // resulting from processing all acknowledged client requests.
38 // Therefore, if the nodes sync up before processing the next request,
39 // the next view will have the correct state.
41 // While the RSM in a view change (i.e., a node has failed, a new view
42 // has been formed, but the sync hasn't completed), another failure
43 // could happen, which complicates a view change. During syncing the
44 // primary or backups can timeout, and initiate another Paxos round.
45 // There are 2 variables that RSM uses to keep track in what state it
47 // - inviewchange: a node has failed and the RSM is performing a view change
48 // - insync: this node is syncing its state
50 // If inviewchange is false and a node is the primary, then it can
51 // process client requests. If it is true, clients are told to retry
52 // later again. While inviewchange is true, the RSM may go through several
53 // member list changes, one by one. After a member list
54 // change completes, the nodes tries to sync. If the sync complets,
55 // the view change completes (and inviewchange is set to false). If
56 // the sync fails, the node may start another member list change
57 // (inviewchange = true and insync = false).
59 // The implementation should be used only with servers that run all
60 // requests run to completion; in particular, a request shouldn't
61 // block. If a request blocks, the backup won't respond to the
62 // primary, and the primary won't execute the request. A request may
63 // send an RPC to another host, but the RPC should be a one-way
64 // message to that host; the backup shouldn't do anything based on the
65 // response or execute after the response, because it is not
66 // guaranteed that all backup will receive the same response and
67 // execute in the same order.
69 // The implementation can be viewed as a layered system:
70 // RSM module ---- in charge of replication
71 // config module ---- in charge of view management
72 // Paxos module ---- in charge of running Paxos to agree on a value
74 // Each module has threads and internal locks. Furthermore, a thread
75 // may call down through the layers (e.g., to run Paxos's proposer).
76 // When Paxos's acceptor accepts a new value for an instance, a thread
77 // will invoke an upcall to inform higher layers of the new value.
78 // The rule is that a module releases its internal locks before it
79 // upcalls, but can keep its locks when calling down.
81 #include <sys/types.h>
87 #include "rsm_client.h"
89 rsm::rsm(std::string _first, std::string _me) :
90 stf(0), primary(_first), insync (false), inviewchange (true), vid_commit(0),
91 partitioned (false), dopartition(false), break1(false), break2(false)
98 cfg = new config(_first, _me, this);
101 // Commit the first view here. We can not have acceptor::acceptor
102 // do the commit, since at that time this->cfg is not initialized
105 rsmrpc = cfg->get_rpcs();
106 rsmrpc->reg(rsm_client_protocol::invoke, &rsm::client_invoke, this);
107 rsmrpc->reg(rsm_client_protocol::members, &rsm::client_members, this);
108 rsmrpc->reg(rsm_protocol::invoke, &rsm::invoke, this);
109 rsmrpc->reg(rsm_protocol::transferreq, &rsm::transferreq, this);
110 rsmrpc->reg(rsm_protocol::transferdonereq, &rsm::transferdonereq, this);
111 rsmrpc->reg(rsm_protocol::joinreq, &rsm::joinreq, this);
113 // tester must be on different port, otherwise it may partition itself
114 testsvr = new rpcs((uint32_t)std::stoi(_me) + 1);
115 testsvr->reg(rsm_test_protocol::net_repair, &rsm::test_net_repairreq, this);
116 testsvr->reg(rsm_test_protocol::breakpoint, &rsm::breakpointreq, this);
120 std::thread(&rsm::recovery, this).detach();
124 void rsm::reg1(int proc, handler *h) {
129 // The recovery thread runs this function
130 void rsm::recovery() [[noreturn]] {
135 while (!cfg->ismember(cfg->myaddr(), vid_commit)) {
136 // XXX iannucci 2013/09/15 -- I don't understand whether accessing
137 // cfg->view_id in this manner involves a race. I suspect not.
138 if (join(primary, ml)) {
139 LOG("recovery: joined");
140 commit_change(cfg->view_id(), ml);
143 std::this_thread::sleep_for(std::chrono::seconds(30)); // XXX make another node in cfg primary?
147 vid_insync = vid_commit;
148 LOG("recovery: sync vid_insync " << vid_insync);
149 if (primary == cfg->myaddr()) {
150 r = sync_with_backups(ml);
152 r = sync_with_primary(ml);
154 LOG("recovery: sync done");
156 // If there was a commited viewchange during the synchronization, restart
158 if (vid_insync != vid_commit)
162 myvs.vid = vid_commit;
164 inviewchange = false;
166 LOG("recovery: go to sleep " << insync << " " << inviewchange);
167 recovery_cond.wait(ml);
171 bool rsm::sync_with_backups(lock & rsm_mutex_lock) {
172 rsm_mutex_lock.unlock();
174 // Make sure that the state of lock_server is stable during
175 // synchronization; otherwise, the primary's state may be more recent
176 // than replicas after the synchronization.
177 lock invoke_mutex_lock(invoke_mutex);
178 // By acquiring and releasing the invoke_mutex once, we make sure that
179 // the state of lock_server will not be changed until all
180 // replicas are synchronized. The reason is that client_invoke arrives
181 // after this point of time will see inviewchange == true, and returns
184 rsm_mutex_lock.lock();
185 // Start accepting synchronization request (statetransferreq) now!
187 cfg->get_view(vid_insync, backups);
188 backups.erase(find(backups.begin(), backups.end(), cfg->myaddr()));
189 LOG("rsm::sync_with_backups " << backups);
190 sync_cond.wait(rsm_mutex_lock);
196 bool rsm::sync_with_primary(lock & rsm_mutex_lock) {
197 // Remember the primary of vid_insync
198 std::string m = primary;
199 while (vid_insync == vid_commit) {
200 if (statetransfer(m, rsm_mutex_lock))
203 return statetransferdone(m, rsm_mutex_lock);
208 * Call to transfer state from m to the local node.
209 * Assumes that rsm_mutex is already held.
211 bool rsm::statetransfer(std::string m, lock & rsm_mutex_lock)
213 rsm_protocol::transferres r;
216 LOG("rsm::statetransfer: contact " << m << " w. my last_myvs(" << last_myvs.vid << "," << last_myvs.seqno << ")");
219 rsm_mutex_lock.unlock();
222 ret = cl->call_timeout(rsm_protocol::transferreq, rpcc::to(1000),
223 r, cfg->myaddr(), last_myvs, vid_insync);
225 rsm_mutex_lock.lock();
227 if (cl == 0 || ret != rsm_protocol::OK) {
228 LOG("rsm::statetransfer: couldn't reach " << m << " " << std::hex << cl << " " << std::dec << ret);
231 if (stf && last_myvs != r.last) {
232 stf->unmarshal_state(r.state);
235 LOG("rsm::statetransfer transfer from " << m << " success, vs(" << last_myvs.vid << "," << last_myvs.seqno << ")");
239 bool rsm::statetransferdone(std::string m, lock & rsm_mutex_lock) {
240 rsm_mutex_lock.unlock();
242 rpcc *cl = h.safebind();
246 auto ret = (rsm_protocol::status)cl->call(rsm_protocol::transferdonereq, r, cfg->myaddr(), vid_insync);
247 done = (ret == rsm_protocol::OK);
249 rsm_mutex_lock.lock();
254 bool rsm::join(std::string m, lock & rsm_mutex_lock) {
259 LOG("rsm::join: " << m << " mylast (" << last_myvs.vid << "," << last_myvs.seqno << ")");
262 rsm_mutex_lock.unlock();
265 ret = cl->call_timeout(rsm_protocol::joinreq, rpcc::to(120000), log,
266 cfg->myaddr(), last_myvs);
268 rsm_mutex_lock.lock();
271 if (cl == 0 || ret != rsm_protocol::OK) {
272 LOG("rsm::join: couldn't reach " << m << " " << std::hex << cl << " " << std::dec << ret);
275 LOG("rsm::join: succeeded " << log);
281 * Config informs rsm whenever it has successfully
282 * completed a view change
284 void rsm::commit_change(unsigned vid) {
286 commit_change(vid, ml);
287 if (cfg->ismember(cfg->myaddr(), vid_commit))
291 void rsm::commit_change(unsigned vid, lock &) {
292 if (vid <= vid_commit)
294 LOG("commit_change: new view (" << vid << ") last vs (" << last_myvs.vid << "," <<
295 last_myvs.seqno << ") " << primary << " insync " << insync);
299 recovery_cond.notify_one();
300 sync_cond.notify_one();
301 if (cfg->ismember(cfg->myaddr(), vid_commit))
306 void rsm::execute(int procno, std::string req, std::string &r) {
308 handler *h = procs[procno];
310 unmarshall args(req);
313 auto ret = (rsm_protocol::status)(*h)(args, rep);
321 // Clients call client_invoke to invoke a procedure on the replicated state
322 // machine: the primary receives the request, assigns it a sequence
323 // number, and invokes it on all members of the replicated state
326 rsm_client_protocol::status rsm::client_invoke(std::string &r, int procno, std::string req) {
327 LOG("rsm::client_invoke: procno 0x" << std::hex << procno);
328 lock ml(invoke_mutex);
329 std::vector<std::string> m;
334 LOG("Checking for inviewchange");
336 return rsm_client_protocol::BUSY;
337 LOG("Checking for primacy");
338 myaddr = cfg->myaddr();
339 if (primary != myaddr)
340 return rsm_client_protocol::NOTPRIMARY;
341 LOG("Assigning a viewstamp");
342 cfg->get_view(vid_commit, m);
343 // assign the RPC the next viewstamp number
348 // send an invoke RPC to all slaves in the current view with a timeout of 1 second
349 LOG("Invoking slaves");
350 for (unsigned i = 0; i < m.size(); i++) {
351 if (m[i] != myaddr) {
352 // if invoke on slave fails, return rsm_client_protocol::BUSY
354 LOG("Sending invoke to " << m[i]);
355 rpcc *cl = h.safebind();
357 return rsm_client_protocol::BUSY;
359 auto ret = (rsm_protocol::status)cl->call_timeout(rsm_protocol::invoke, rpcc::to(1000), ignored_rval, procno, vs, req);
360 LOG("Invoke returned " << ret);
361 if (ret != rsm_protocol::OK)
362 return rsm_client_protocol::BUSY;
364 lock rsm_mutex_lock(rsm_mutex);
365 partition1(rsm_mutex_lock);
368 execute(procno, req, r);
370 return rsm_client_protocol::OK;
374 // The primary calls the internal invoke at each member of the
375 // replicated state machine
377 // the replica must execute requests in order (with no gaps)
378 // according to requests' seqno
380 rsm_protocol::status rsm::invoke(int &, int proc, viewstamp vs, std::string req) {
381 LOG("rsm::invoke: procno 0x" << std::hex << proc);
382 lock ml(invoke_mutex);
383 std::vector<std::string> m;
387 // check if !inviewchange
388 LOG("Checking for view change");
390 return rsm_protocol::ERR;
392 LOG("Checking for slave status");
393 myaddr = cfg->myaddr();
394 if (primary == myaddr)
395 return rsm_protocol::ERR;
396 cfg->get_view(vid_commit, m);
397 if (find(m.begin(), m.end(), myaddr) == m.end())
398 return rsm_protocol::ERR;
399 // check sequence number
400 LOG("Checking sequence number");
402 return rsm_protocol::ERR;
406 execute(proc, req, r);
409 return rsm_protocol::OK;
413 * RPC handler: Send back the local node's state to the caller
415 rsm_protocol::status rsm::transferreq(rsm_protocol::transferres &r, std::string src,
416 viewstamp last, unsigned vid) {
418 LOG("transferreq from " << src << " (" << last.vid << "," << last.seqno << ") vs (" <<
419 last_myvs.vid << "," << last_myvs.seqno << ")");
420 if (!insync || vid != vid_insync)
421 return rsm_protocol::BUSY;
422 if (stf && last != last_myvs)
423 r.state = stf->marshal_state();
425 return rsm_protocol::OK;
429 * RPC handler: Inform the local node (the primary) that node m has synchronized
432 rsm_protocol::status rsm::transferdonereq(int &, std::string m, unsigned vid) {
434 if (!insync || vid != vid_insync)
435 return rsm_protocol::BUSY;
436 backups.erase(find(backups.begin(), backups.end(), m));
438 sync_cond.notify_one();
439 return rsm_protocol::OK;
442 // a node that wants to join an RSM as a server sends a
443 // joinreq to the RSM's current primary; this is the
444 // handler for that RPC.
445 rsm_protocol::status rsm::joinreq(string & log, std::string m, viewstamp last) {
446 auto ret = rsm_protocol::OK;
449 LOG("join request from " << m << "; last=(" << last.vid << "," << last.seqno << "), mylast=(" <<
450 last_myvs.vid << "," << last_myvs.seqno << ")");
451 if (cfg->ismember(m, vid_commit)) {
452 LOG(m << " is still a member -- nothing to do");
454 } else if (cfg->myaddr() != primary) {
455 LOG("but I, " << cfg->myaddr() << ", am not the primary, " << primary << "!");
456 ret = rsm_protocol::BUSY;
458 // We cache vid_commit to avoid adding m to a view which already contains
459 // m due to race condition
460 LOG("calling down to config layer");
461 unsigned vid_cache = vid_commit;
465 succ = cfg->add(m, vid_cache);
468 if (cfg->ismember(m, cfg->view_id())) {
470 LOG("ret " << ret << " log " << log);
472 LOG("failed; proposer couldn't add " << succ);
473 ret = rsm_protocol::BUSY;
480 * RPC handler: Send back all the nodes this local knows about to client
481 * so the client can switch to a different primary
482 * when it existing primary fails
484 rsm_client_protocol::status rsm::client_members(std::vector<std::string> &r, int) {
485 std::vector<std::string> m;
487 cfg->get_view(vid_commit, m);
488 m.push_back(primary);
490 LOG("rsm::client_members return " << m << " m " << primary);
491 return rsm_client_protocol::OK;
494 // if primary is member of new view, that node is primary
495 // otherwise, the lowest number node of the previous view.
496 // caller should hold rsm_mutex
497 void rsm::set_primary(unsigned vid) {
498 std::vector<std::string> c, p;
499 cfg->get_view(vid, c);
500 cfg->get_view(vid - 1, p);
501 VERIFY (c.size() > 0);
503 if (isamember(primary,c)) {
504 LOG("set_primary: primary stays " << primary);
508 VERIFY(p.size() > 0);
509 for (unsigned i = 0; i < p.size(); i++) {
510 if (isamember(p[i], c)) {
512 LOG("set_primary: primary is " << primary);
519 bool rsm::amiprimary() {
521 return primary == cfg->myaddr() && !inviewchange;
527 // Simulate partitions
529 // assumes caller holds rsm_mutex
530 void rsm::net_repair(bool heal, lock &) {
531 std::vector<std::string> m;
532 cfg->get_view(vid_commit, m);
533 for (unsigned i = 0; i < m.size(); i++) {
534 if (m[i] != cfg->myaddr()) {
536 LOG("rsm::net_repair: " << m[i] << " " << heal);
537 if (h.safebind()) h.safebind()->set_reachable(heal);
540 rsmrpc->set_reachable(heal);
543 rsm_test_protocol::status rsm::test_net_repairreq(rsm_test_protocol::status &r, int heal) {
545 LOG("rsm::test_net_repairreq: " << heal << " (dopartition " <<
546 dopartition << ", partitioned " << partitioned << ")");
548 net_repair(heal, ml);
554 r = rsm_test_protocol::OK;
558 // simulate failure at breakpoint 1 and 2
560 void rsm::breakpoint1() {
562 LOG("Dying at breakpoint 1 in rsm!");
567 void rsm::breakpoint2() {
569 LOG("Dying at breakpoint 2 in rsm!");
574 void rsm::partition1(lock & rsm_mutex_lock) {
576 net_repair(false, rsm_mutex_lock);
582 rsm_test_protocol::status rsm::breakpointreq(rsm_test_protocol::status &r, int b) {
583 r = rsm_test_protocol::OK;
585 LOG("rsm::breakpointreq: " << b);
586 if (b == 1) break1 = true;
587 else if (b == 2) break2 = true;
588 else if (b == 3 || b == 4) cfg->breakpoint(b);
589 else r = rsm_test_protocol::ERR;