2 // Replicated state machine implementation with a primary and several
3 // backups. The primary receives requests, assigns each a view stamp (a
4 // vid, and a sequence number) in the order of reception, and forwards
5 // them to all backups. A backup executes requests in the order that
6 // the primary stamps them and replies with an OK to the primary. The
7 // primary executes the request after it receives OKs from all backups,
8 // and sends the reply back to the client.
10 // The config module will tell the RSM about a new view. If the
11 // primary in the previous view is a member of the new view, then it
12 // will stay the primary. Otherwise, the smallest numbered node of
13 // the previous view will be the new primary. In either case, the new
14 // primary will be a node from the previous view. The configuration
15 // module constructs the sequence of views for the RSM and the RSM
16 // ensures there will be always one primary, who was a member of the
19 // When a new node starts, the recovery thread is in charge of joining
20 // the RSM. It will collect the internal RSM state from the primary;
21 // the primary asks the config module to add the new node and returns
22 // to the joining the internal RSM state (e.g., paxos log). Since
23 // there is only one primary, all joins happen in well-defined total
26 // The recovery thread also runs during a view change (e.g, when a node
27 // has failed). After a failure some of the backups could have
28 // processed a request that the primary has not, but those results are
29 // not visible to clients (since the primary responds). If the
30 // primary of the previous view is in the current view, then it will
31 // be the primary and its state is authoritive: the backups download
32 // from the primary the current state. A primary waits until all
33 // backups have downloaded the state. Once the RSM is in sync, the
34 // primary accepts requests again from clients. If one of the backups
35 // is the new primary, then its state is authoritative. In either
36 // scenario, the next view uses a node as primary that has the state
37 // resulting from processing all acknowledged client requests.
38 // Therefore, if the nodes sync up before processing the next request,
39 // the next view will have the correct state.
41 // While the RSM in a view change (i.e., a node has failed, a new view
42 // has been formed, but the sync hasn't completed), another failure
43 // could happen, which complicates a view change. During syncing the
44 // primary or backups can timeout, and initiate another Paxos round.
45 // There are 2 variables that RSM uses to keep track in what state it
47 // - inviewchange: a node has failed and the RSM is performing a view change
48 // - insync: this node is syncing its state
50 // If inviewchange is false and a node is the primary, then it can
51 // process client requests. If it is true, clients are told to retry
52 // later again. While inviewchange is true, the RSM may go through several
53 // member list changes, one by one. After a member list
54 // change completes, the nodes tries to sync. If the sync complets,
55 // the view change completes (and inviewchange is set to false). If
56 // the sync fails, the node may start another member list change
57 // (inviewchange = true and insync = false).
59 // The implementation should be used only with servers that run all
60 // requests run to completion; in particular, a request shouldn't
61 // block. If a request blocks, the backup won't respond to the
62 // primary, and the primary won't execute the request. A request may
63 // send an RPC to another host, but the RPC should be a one-way
64 // message to that host; the backup shouldn't do anything based on the
65 // response or execute after the response, because it is not
66 // guaranteed that all backup will receive the same response and
67 // execute in the same order.
69 // The implementation can be viewed as a layered system:
70 // RSM module ---- in charge of replication
71 // config module ---- in charge of view management
72 // Paxos module ---- in charge of running Paxos to agree on a value
74 // Each module has threads and internal locks. Furthermore, a thread
75 // may call down through the layers (e.g., to run Paxos's proposer).
76 // When Paxos's acceptor accepts a new value for an instance, a thread
77 // will invoke an upcall to inform higher layers of the new value.
78 // The rule is that a module releases its internal locks before it
79 // upcalls, but can keep its locks when calling down.
87 #include "lang/verify.h"
88 #include "rsm_client.h"
90 static void *recoverythread(void *x) {
96 rsm::rsm(std::string _first, std::string _me) :
97 stf(0), primary(_first), insync (false), inviewchange (true), vid_commit(0),
98 partitioned (false), dopartition(false), break1(false), break2(false)
107 cfg = new config(_first, _me, this);
110 // Commit the first view here. We can not have acceptor::acceptor
111 // do the commit, since at that time this->cfg is not initialized
114 rsmrpc = cfg->get_rpcs();
115 rsmrpc->reg(rsm_client_protocol::invoke, this, &rsm::client_invoke);
116 rsmrpc->reg(rsm_client_protocol::members, this, &rsm::client_members);
117 rsmrpc->reg(rsm_protocol::invoke, this, &rsm::invoke);
118 rsmrpc->reg(rsm_protocol::transferreq, this, &rsm::transferreq);
119 rsmrpc->reg(rsm_protocol::transferdonereq, this, &rsm::transferdonereq);
120 rsmrpc->reg(rsm_protocol::joinreq, this, &rsm::joinreq);
122 // tester must be on different port, otherwise it may partition itself
123 testsvr = new rpcs(atoi(_me.c_str()) + 1);
124 testsvr->reg(rsm_test_protocol::net_repair, this, &rsm::test_net_repairreq);
125 testsvr->reg(rsm_test_protocol::breakpoint, this, &rsm::breakpointreq);
128 ScopedLock ml(rsm_mutex);
129 VERIFY(pthread_create(&th, NULL, &recoverythread, (void *) this) == 0);
133 void rsm::reg1(int proc, handler *h) {
134 ScopedLock ml(rsm_mutex);
138 // The recovery thread runs this function
139 void rsm::recovery() {
141 ScopedLock ml(rsm_mutex);
144 while (!cfg->ismember(cfg->myaddr(), vid_commit)) {
146 tprintf("recovery: joined\n");
147 commit_change_wo(cfg->vid());
149 ScopedUnlock su(rsm_mutex);
150 sleep (30); // XXX make another node in cfg primary?
153 vid_insync = vid_commit;
154 tprintf("recovery: sync vid_insync %d\n", vid_insync);
155 if (primary == cfg->myaddr()) {
156 r = sync_with_backups();
158 r = sync_with_primary();
160 tprintf("recovery: sync done\n");
162 // If there was a commited viewchange during the synchronization, restart
164 if (vid_insync != vid_commit)
168 myvs.vid = vid_commit;
170 inviewchange = false;
172 tprintf("recovery: go to sleep %d %d\n", insync, inviewchange);
173 recovery_cond.wait(rsm_mutex);
178 std::ostream & operator<<(std::ostream &o, const std::vector<A> &d) {
180 for (typename std::vector<A>::const_iterator i=d.begin(); i!=d.end(); i++) {
189 bool rsm::sync_with_backups() {
191 ScopedUnlock su(rsm_mutex);
192 // Make sure that the state of lock_server_cache_rsm is stable during
193 // synchronization; otherwise, the primary's state may be more recent
194 // than replicas after the synchronization.
195 ScopedLock ml(invoke_mutex);
196 // By acquiring and releasing the invoke_mutex once, we make sure that
197 // the state of lock_server_cache_rsm will not be changed until all
198 // replicas are synchronized. The reason is that client_invoke arrives
199 // after this point of time will see inviewchange == true, and returns
202 // Start accepting synchronization request (statetransferreq) now!
204 backups = std::vector<std::string>(cfg->get_view(vid_insync));
205 backups.erase(find(backups.begin(), backups.end(), cfg->myaddr()));
206 LOG("rsm::sync_with_backups " << backups);
207 sync_cond.wait(rsm_mutex);
213 bool rsm::sync_with_primary() {
214 // Remember the primary of vid_insync
215 std::string m = primary;
216 while (vid_insync == vid_commit) {
217 if (statetransfer(m))
220 return statetransferdone(m);
225 * Call to transfer state from m to the local node.
226 * Assumes that rsm_mutex is already held.
228 bool rsm::statetransfer(std::string m)
230 rsm_protocol::transferres r;
233 tprintf("rsm::statetransfer: contact %s w. my last_myvs(%d,%d)\n",
234 m.c_str(), last_myvs.vid, last_myvs.seqno);
237 ScopedUnlock su(rsm_mutex);
240 ret = cl->call(rsm_protocol::transferreq, cfg->myaddr(),
241 last_myvs, vid_insync, r, rpcc::to(1000));
244 if (cl == 0 || ret != rsm_protocol::OK) {
245 tprintf("rsm::statetransfer: couldn't reach %s %lx %d\n", m.c_str(),
246 (long unsigned) cl, ret);
249 if (stf && last_myvs != r.last) {
250 stf->unmarshal_state(r.state);
253 tprintf("rsm::statetransfer transfer from %s success, vs(%d,%d)\n",
254 m.c_str(), last_myvs.vid, last_myvs.seqno);
258 bool rsm::statetransferdone(std::string m) {
259 ScopedUnlock su(rsm_mutex);
261 rpcc *cl = h.safebind();
265 rsm_protocol::status ret = cl->call(rsm_protocol::transferdonereq, cfg->myaddr(), vid_insync, r);
266 if (ret != rsm_protocol::OK)
272 bool rsm::join(std::string m) {
275 rsm_protocol::joinres r;
277 tprintf("rsm::join: %s mylast (%d,%d)\n", m.c_str(), last_myvs.vid,
281 ScopedUnlock su(rsm_mutex);
284 ret = cl->call(rsm_protocol::joinreq, cfg->myaddr(), last_myvs,
285 r, rpcc::to(120000));
289 if (cl == 0 || ret != rsm_protocol::OK) {
290 tprintf("rsm::join: couldn't reach %s %p %d\n", m.c_str(),
294 tprintf("rsm::join: succeeded %s\n", r.log.c_str());
300 * Config informs rsm whenever it has successfully
301 * completed a view change
303 void rsm::commit_change(unsigned vid) {
304 ScopedLock ml(rsm_mutex);
305 commit_change_wo(vid);
306 if (cfg->ismember(cfg->myaddr(), vid_commit))
310 void rsm::commit_change_wo(unsigned vid) {
311 if (vid <= vid_commit)
313 tprintf("commit_change: new view (%d) last vs (%d,%d) %s insync %d\n",
314 vid, last_myvs.vid, last_myvs.seqno, primary.c_str(), insync);
318 recovery_cond.signal();
320 if (cfg->ismember(cfg->myaddr(), vid_commit))
325 void rsm::execute(int procno, std::string req, std::string &r) {
326 tprintf("execute\n");
327 handler *h = procs[procno];
329 unmarshall args(req);
332 rsm_protocol::status ret = h->fn(args, rep);
340 // Clients call client_invoke to invoke a procedure on the replicated state
341 // machine: the primary receives the request, assigns it a sequence
342 // number, and invokes it on all members of the replicated state
345 rsm_client_protocol::status rsm::client_invoke(int procno, std::string req, std::string &r) {
346 LOG("rsm::client_invoke: procno 0x" << std::hex << procno);
347 ScopedLock ml(invoke_mutex);
348 std::vector<std::string> m;
352 ScopedLock ml(rsm_mutex);
353 LOG("Checking for inviewchange");
355 return rsm_client_protocol::BUSY;
356 LOG("Checking for primacy");
357 myaddr = cfg->myaddr();
358 if (primary != myaddr)
359 return rsm_client_protocol::NOTPRIMARY;
360 LOG("Assigning a viewstamp");
361 m = cfg->get_view(vid_commit);
362 // assign the RPC the next viewstamp number
367 // send an invoke RPC to all slaves in the current view with a timeout of 1 second
368 LOG("Invoking slaves");
369 for (unsigned i = 0; i < m.size(); i++) {
370 if (m[i] != myaddr) {
371 // if invoke on slave fails, return rsm_client_protocol::BUSY
373 LOG("Sending invoke to " << m[i]);
374 rpcc *cl = h.safebind();
376 return rsm_client_protocol::BUSY;
377 rsm_protocol::status ret;
379 ret = cl->call(rsm_protocol::invoke, procno, vs, req, r, rpcc::to(1000));
380 LOG("Invoke returned " << ret);
381 if (ret != rsm_protocol::OK)
382 return rsm_client_protocol::BUSY;
387 execute(procno, req, r);
389 return rsm_client_protocol::OK;
393 // The primary calls the internal invoke at each member of the
394 // replicated state machine
396 // the replica must execute requests in order (with no gaps)
397 // according to requests' seqno
399 rsm_protocol::status rsm::invoke(int proc, viewstamp vs, std::string req, int &dummy) {
400 LOG("rsm::invoke: procno 0x" << std::hex << proc);
401 ScopedLock ml(invoke_mutex);
402 std::vector<std::string> m;
405 ScopedLock ml(rsm_mutex);
406 // check if !inviewchange
407 LOG("Checking for view change");
409 return rsm_protocol::ERR;
411 LOG("Checking for slave status");
412 myaddr = cfg->myaddr();
413 if (primary == myaddr)
414 return rsm_protocol::ERR;
415 m = cfg->get_view(vid_commit);
416 if (find(m.begin(), m.end(), myaddr) == m.end())
417 return rsm_protocol::ERR;
418 // check sequence number
419 LOG("Checking sequence number");
421 return rsm_protocol::ERR;
425 execute(proc, req, r);
428 return rsm_protocol::OK;
432 * RPC handler: Send back the local node's state to the caller
434 rsm_protocol::status rsm::transferreq(std::string src, viewstamp last, unsigned vid,
435 rsm_protocol::transferres &r) {
436 ScopedLock ml(rsm_mutex);
437 int ret = rsm_protocol::OK;
438 tprintf("transferreq from %s (%d,%d) vs (%d,%d)\n", src.c_str(),
439 last.vid, last.seqno, last_myvs.vid, last_myvs.seqno);
440 if (!insync || vid != vid_insync) {
441 return rsm_protocol::BUSY;
443 if (stf && last != last_myvs)
444 r.state = stf->marshal_state();
450 * RPC handler: Inform the local node (the primary) that node m has synchronized
453 rsm_protocol::status rsm::transferdonereq(std::string m, unsigned vid, int &) {
454 ScopedLock ml(rsm_mutex);
455 if (!insync || vid != vid_insync)
456 return rsm_protocol::BUSY;
457 backups.erase(find(backups.begin(), backups.end(), m));
460 return rsm_protocol::OK;
463 // a node that wants to join an RSM as a server sends a
464 // joinreq to the RSM's current primary; this is the
465 // handler for that RPC.
466 rsm_protocol::status rsm::joinreq(std::string m, viewstamp last, rsm_protocol::joinres &r) {
467 int ret = rsm_protocol::OK;
469 ScopedLock ml(rsm_mutex);
470 tprintf("joinreq: src %s last (%d,%d) mylast (%d,%d)\n", m.c_str(),
471 last.vid, last.seqno, last_myvs.vid, last_myvs.seqno);
472 if (cfg->ismember(m, vid_commit)) {
473 tprintf("joinreq: is still a member\n");
475 } else if (cfg->myaddr() != primary) {
476 tprintf("joinreq: busy\n");
477 ret = rsm_protocol::BUSY;
479 // We cache vid_commit to avoid adding m to a view which already contains
480 // m due to race condition
481 unsigned vid_cache = vid_commit;
484 ScopedUnlock su(rsm_mutex);
485 succ = cfg->add(m, vid_cache);
487 if (cfg->ismember(m, cfg->vid())) {
489 tprintf("joinreq: ret %d log %s\n:", ret, r.log.c_str());
491 tprintf("joinreq: failed; proposer couldn't add %d\n", succ);
492 ret = rsm_protocol::BUSY;
499 * RPC handler: Send back all the nodes this local knows about to client
500 * so the client can switch to a different primary
501 * when it existing primary fails
503 rsm_client_protocol::status rsm::client_members(int i, std::vector<std::string> &r) {
504 std::vector<std::string> m;
505 ScopedLock ml(rsm_mutex);
506 m = cfg->get_view(vid_commit);
507 m.push_back(primary);
509 tprintf("rsm::client_members return %s m %s\n", print_members(m).c_str(),
511 return rsm_client_protocol::OK;
514 // if primary is member of new view, that node is primary
515 // otherwise, the lowest number node of the previous view.
516 // caller should hold rsm_mutex
517 void rsm::set_primary(unsigned vid) {
518 std::vector<std::string> c = cfg->get_view(vid);
519 std::vector<std::string> p = cfg->get_view(vid - 1);
520 VERIFY (c.size() > 0);
522 if (isamember(primary,c)) {
523 tprintf("set_primary: primary stays %s\n", primary.c_str());
527 VERIFY(p.size() > 0);
528 for (unsigned i = 0; i < p.size(); i++) {
529 if (isamember(p[i], c)) {
531 tprintf("set_primary: primary is %s\n", primary.c_str());
538 bool rsm::amiprimary() {
539 ScopedLock ml(rsm_mutex);
540 return primary == cfg->myaddr() && !inviewchange;
546 // Simulate partitions
548 // assumes caller holds rsm_mutex
549 void rsm::net_repair_wo(bool heal) {
550 std::vector<std::string> m;
551 m = cfg->get_view(vid_commit);
552 for (unsigned i = 0; i < m.size(); i++) {
553 if (m[i] != cfg->myaddr()) {
555 tprintf("rsm::net_repair_wo: %s %d\n", m[i].c_str(), heal);
556 if (h.safebind()) h.safebind()->set_reachable(heal);
559 rsmrpc->set_reachable(heal);
562 rsm_test_protocol::status rsm::test_net_repairreq(int heal, int &r) {
563 ScopedLock ml(rsm_mutex);
564 tprintf("rsm::test_net_repairreq: %d (dopartition %d, partitioned %d)\n",
565 heal, dopartition, partitioned);
573 r = rsm_test_protocol::OK;
577 // simulate failure at breakpoint 1 and 2
579 void rsm::breakpoint1() {
581 tprintf("Dying at breakpoint 1 in rsm!\n");
586 void rsm::breakpoint2() {
588 tprintf("Dying at breakpoint 2 in rsm!\n");
593 void rsm::partition1() {
595 net_repair_wo(false);
601 rsm_test_protocol::status rsm::breakpointreq(int b, int &r) {
602 r = rsm_test_protocol::OK;
603 ScopedLock ml(rsm_mutex);
604 tprintf("rsm::breakpointreq: %d\n", b);
605 if (b == 1) break1 = true;
606 else if (b == 2) break2 = true;
607 else if (b == 3 || b == 4) cfg->breakpoint(b);
608 else r = rsm_test_protocol::ERR;