2 // Replicated state machine implementation with a primary and several
3 // backups. The primary receives requests, assigns each a view stamp (a
4 // vid, and a sequence number) in the order of reception, and forwards
5 // them to all backups. A backup executes requests in the order that
6 // the primary stamps them and replies with an OK to the primary. The
7 // primary executes the request after it receives OKs from all backups,
8 // and sends the reply back to the client.
10 // The config module will tell the RSM about a new view. If the
11 // primary in the previous view is a member of the new view, then it
12 // will stay the primary. Otherwise, the smallest numbered node of
13 // the previous view will be the new primary. In either case, the new
14 // primary will be a node from the previous view. The configuration
15 // module constructs the sequence of views for the RSM and the RSM
16 // ensures there will be always one primary, who was a member of the
19 // When a new node starts, the recovery thread is in charge of joining
20 // the RSM. It will collect the internal RSM state from the primary;
21 // the primary asks the config module to add the new node and returns
22 // to the joining the internal RSM state (e.g., paxos log). Since
23 // there is only one primary, all joins happen in well-defined total
26 // The recovery thread also runs during a view change (e.g, when a node
27 // has failed). After a failure some of the backups could have
28 // processed a request that the primary has not, but those results are
29 // not visible to clients (since the primary responds). If the
30 // primary of the previous view is in the current view, then it will
31 // be the primary and its state is authoritive: the backups download
32 // from the primary the current state. A primary waits until all
33 // backups have downloaded the state. Once the RSM is in sync, the
34 // primary accepts requests again from clients. If one of the backups
35 // is the new primary, then its state is authoritative. In either
36 // scenario, the next view uses a node as primary that has the state
37 // resulting from processing all acknowledged client requests.
38 // Therefore, if the nodes sync up before processing the next request,
39 // the next view will have the correct state.
41 // While the RSM in a view change (i.e., a node has failed, a new view
42 // has been formed, but the sync hasn't completed), another failure
43 // could happen, which complicates a view change. During syncing the
44 // primary or backups can timeout, and initiate another Paxos round.
45 // There are 2 variables that RSM uses to keep track in what state it
47 // - inviewchange: a node has failed and the RSM is performing a view change
48 // - insync: this node is syncing its state
50 // If inviewchange is false and a node is the primary, then it can
51 // process client requests. If it is true, clients are told to retry
52 // later again. While inviewchange is true, the RSM may go through several
53 // member list changes, one by one. After a member list
54 // change completes, the nodes tries to sync. If the sync complets,
55 // the view change completes (and inviewchange is set to false). If
56 // the sync fails, the node may start another member list change
57 // (inviewchange = true and insync = false).
59 // The implementation should be used only with servers that run all
60 // requests run to completion; in particular, a request shouldn't
61 // block. If a request blocks, the backup won't respond to the
62 // primary, and the primary won't execute the request. A request may
63 // send an RPC to another host, but the RPC should be a one-way
64 // message to that host; the backup shouldn't do anything based on the
65 // response or execute after the response, because it is not
66 // guaranteed that all backup will receive the same response and
67 // execute in the same order.
69 // The implementation can be viewed as a layered system:
70 // RSM module ---- in charge of replication
71 // config module ---- in charge of view management
72 // Paxos module ---- in charge of running Paxos to agree on a value
74 // Each module has threads and internal locks. Furthermore, a thread
75 // may call down through the layers (e.g., to run Paxos's proposer).
76 // When Paxos's acceptor accepts a new value for an instance, a thread
77 // will invoke an upcall to inform higher layers of the new value.
78 // The rule is that a module releases its internal locks before it
79 // upcalls, but can keep its locks when calling down.
83 #include "rsm_client.h"
86 rsm::rsm(const string & _first, const string & _me) :
87 stf(0), primary(_first), insync (false), inviewchange (true), vid_commit(0),
88 partitioned (false), dopartition(false), break1(false), break2(false)
90 cfg = unique_ptr<config>(new config(_first, _me, this));
93 // Commit the first view here. We can not have acceptor::acceptor
94 // do the commit, since at that time this->cfg is not initialized
97 rsmrpc = cfg->get_rpcs();
98 rsmrpc->reg(rsm_client_protocol::invoke, &rsm::client_invoke, this);
99 rsmrpc->reg(rsm_client_protocol::members, &rsm::client_members, this);
100 rsmrpc->reg(rsm_protocol::invoke, &rsm::invoke, this);
101 rsmrpc->reg(rsm_protocol::transferreq, &rsm::transferreq, this);
102 rsmrpc->reg(rsm_protocol::transferdonereq, &rsm::transferdonereq, this);
103 rsmrpc->reg(rsm_protocol::joinreq, &rsm::joinreq, this);
105 // tester must be on different port, otherwise it may partition itself
106 testsvr = unique_ptr<rpcs>(new rpcs((in_port_t)stoi(_me) + 1));
107 testsvr->reg(rsm_test_protocol::net_repair, &rsm::test_net_repairreq, this);
108 testsvr->reg(rsm_test_protocol::breakpoint, &rsm::breakpointreq, this);
115 thread(&rsm::recovery, this).detach();
118 void rsm::reg1(rpc_protocol::proc_id_t proc, handler *h) {
123 // The recovery thread runs this function
124 void rsm::recovery() {
129 while (!cfg->ismember(cfg->myaddr(), vid_commit)) {
130 // XXX iannucci 2013/09/15 -- I don't understand whether accessing
131 // cfg->view_id in this manner involves a race. I suspect not.
132 if (join(primary, ml)) {
134 commit_change(cfg->view_id(), ml);
137 this_thread::sleep_for(seconds(3)); // XXX make another node in cfg primary?
141 vid_insync = vid_commit;
142 LOG("sync vid_insync " << vid_insync);
143 if (primary == cfg->myaddr()) {
144 r = sync_with_backups(ml);
146 r = sync_with_primary(ml);
150 // If there was a commited viewchange during the synchronization, restart
152 if (vid_insync != vid_commit)
156 myvs.vid = vid_commit;
158 inviewchange = false;
160 LOG("go to sleep " << insync << " " << inviewchange);
161 recovery_cond.wait(ml);
165 bool rsm::sync_with_backups(lock & rsm_mutex_lock) {
166 rsm_mutex_lock.unlock();
168 // Make sure that the state of lock_server is stable during
169 // synchronization; otherwise, the primary's state may be more recent
170 // than replicas after the synchronization.
171 lock invoke_mutex_lock(invoke_mutex);
172 // By acquiring and releasing the invoke_mutex once, we make sure that
173 // the state of lock_server will not be changed until all
174 // replicas are synchronized. The reason is that client_invoke arrives
175 // after this point of time will see inviewchange == true, and returns
178 rsm_mutex_lock.lock();
179 // Start accepting synchronization request (statetransferreq) now!
181 cfg->get_view(vid_insync, backups);
182 backups.erase(find(backups.begin(), backups.end(), cfg->myaddr()));
183 LOG("backups " << backups);
184 sync_cond.wait(rsm_mutex_lock);
190 bool rsm::sync_with_primary(lock & rsm_mutex_lock) {
191 // Remember the primary of vid_insync
193 while (vid_insync == vid_commit) {
194 if (statetransfer(m, rsm_mutex_lock))
197 return statetransferdone(m, rsm_mutex_lock);
202 // Call to transfer state from m to the local node.
203 // Assumes that rsm_mutex is already held.
205 bool rsm::statetransfer(const string & m, lock & rsm_mutex_lock)
207 rsm_protocol::transferres r;
210 LOG("contact " << m << " w. my last_myvs(" << last_myvs.vid << "," << last_myvs.seqno << ")");
213 rsm_mutex_lock.unlock();
216 ret = cl->call_timeout(rsm_protocol::transferreq, milliseconds(100),
217 r, cfg->myaddr(), last_myvs, vid_insync);
219 rsm_mutex_lock.lock();
221 if (cl == 0 || ret != rsm_protocol::OK) {
222 LOG("couldn't reach " << m << " " << hex << cl << " " << dec << ret);
225 if (stf && last_myvs != r.last) {
226 stf->unmarshal_state(r.state);
229 LOG("transfer from " << m << " success, vs(" << last_myvs.vid << "," << last_myvs.seqno << ")");
233 bool rsm::statetransferdone(const string & m, lock & rsm_mutex_lock) {
234 rsm_mutex_lock.unlock();
236 rpcc *cl = h.safebind();
240 auto ret = (rsm_protocol::status)cl->call(rsm_protocol::transferdonereq, r, cfg->myaddr(), vid_insync);
241 done = (ret == rsm_protocol::OK);
243 rsm_mutex_lock.lock();
248 bool rsm::join(const string & m, lock & rsm_mutex_lock) {
253 LOG("contacting " << m << " mylast (" << last_myvs.vid << "," << last_myvs.seqno << ")");
256 rsm_mutex_lock.unlock();
259 ret = cl->call_timeout(rsm_protocol::joinreq, milliseconds(12000), log,
260 cfg->myaddr(), last_myvs);
262 rsm_mutex_lock.lock();
265 if (cl == 0 || ret != rsm_protocol::OK) {
266 LOG("couldn't reach " << m << " " << hex << cl << " " << dec << ret);
269 LOG("succeeded " << log);
275 // Config informs rsm whenever it has successfully
276 // completed a view change
278 void rsm::commit_change(unsigned vid) {
280 commit_change(vid, ml);
281 if (cfg->ismember(cfg->myaddr(), vid_commit))
285 void rsm::commit_change(unsigned vid, lock &) {
286 if (vid <= vid_commit)
288 LOG("new view (" << vid << ") last vs (" << last_myvs.vid << "," <<
289 last_myvs.seqno << ") " << primary << " insync " << insync);
293 recovery_cond.notify_one();
294 sync_cond.notify_one();
295 if (cfg->ismember(cfg->myaddr(), vid_commit))
300 void rsm::execute(rpc_protocol::proc_id_t procno, const string & req, string & r) {
302 handler *h = procs[procno];
304 unmarshall args(req, false);
306 auto ret = (rsm_protocol::status)(*h)(args, rep);
307 r = marshall{ret, rep.content()}.content();
311 // Clients call client_invoke to invoke a procedure on the replicated state
312 // machine: the primary receives the request, assigns it a sequence
313 // number, and invokes it on all members of the replicated state
316 rsm_client_protocol::status rsm::client_invoke(string & r, rpc_protocol::proc_id_t procno, const string & req) {
317 LOG("invoke procno 0x" << hex << procno);
318 lock ml(invoke_mutex);
324 LOG("Checking for inviewchange");
326 return rsm_client_protocol::BUSY;
327 LOG("Checking for primacy");
328 myaddr = cfg->myaddr();
329 if (primary != myaddr)
330 return rsm_client_protocol::NOTPRIMARY;
331 LOG("Assigning a viewstamp");
332 cfg->get_view(vid_commit, m);
333 // assign the RPC the next viewstamp number
338 // send an invoke RPC to all slaves in the current view with a timeout of 1 second
339 LOG("Invoking slaves");
340 for (unsigned i = 0; i < m.size(); i++) {
341 if (m[i] != myaddr) {
342 // if invoke on slave fails, return rsm_client_protocol::BUSY
344 LOG("Sending invoke to " << m[i]);
345 rpcc *cl = h.safebind();
347 return rsm_client_protocol::BUSY;
349 auto ret = (rsm_protocol::status)cl->call_timeout(rsm_protocol::invoke, milliseconds(100), ignored_rval, procno, vs, req);
350 LOG("Invoke returned " << ret);
351 if (ret != rsm_protocol::OK)
352 return rsm_client_protocol::BUSY;
354 lock rsm_mutex_lock(rsm_mutex);
355 partition1(rsm_mutex_lock);
358 execute(procno, req, r);
359 for (size_t i=0; i<r.size(); i++) {
360 LOG(hex << setfill('0') << setw(2) << (unsigned int)(unsigned char)r[i]);
363 return rsm_client_protocol::OK;
367 // The primary calls the internal invoke at each member of the
368 // replicated state machine
370 // the replica must execute requests in order (with no gaps)
371 // according to requests' seqno
373 rsm_protocol::status rsm::invoke(int &, rpc_protocol::proc_id_t proc, viewstamp vs, const string & req) {
374 LOG("invoke procno 0x" << hex << proc);
375 lock ml(invoke_mutex);
380 // check if !inviewchange
381 LOG("Checking for view change");
383 return rsm_protocol::ERR;
385 LOG("Checking for slave status");
386 myaddr = cfg->myaddr();
387 if (primary == myaddr)
388 return rsm_protocol::ERR;
389 cfg->get_view(vid_commit, m);
390 if (find(m.begin(), m.end(), myaddr) == m.end())
391 return rsm_protocol::ERR;
392 // check sequence number
393 LOG("Checking sequence number");
395 return rsm_protocol::ERR;
399 execute(proc, req, r);
402 return rsm_protocol::OK;
406 // RPC handler: Send back the local node's state to the caller
408 rsm_protocol::status rsm::transferreq(rsm_protocol::transferres &r, const string & src,
409 viewstamp last, unsigned vid) {
411 LOG("transferreq from " << src << " (" << last.vid << "," << last.seqno << ") vs (" <<
412 last_myvs.vid << "," << last_myvs.seqno << ")");
413 if (!insync || vid != vid_insync)
414 return rsm_protocol::BUSY;
415 if (stf && last != last_myvs)
416 r.state = stf->marshal_state();
418 return rsm_protocol::OK;
422 // RPC handler: Inform the local node (the primary) that node m has synchronized
425 rsm_protocol::status rsm::transferdonereq(int &, const string & m, unsigned vid) {
427 if (!insync || vid != vid_insync)
428 return rsm_protocol::BUSY;
429 backups.erase(find(backups.begin(), backups.end(), m));
431 sync_cond.notify_one();
432 return rsm_protocol::OK;
435 // a node that wants to join an RSM as a server sends a
436 // joinreq to the RSM's current primary; this is the
437 // handler for that RPC.
438 rsm_protocol::status rsm::joinreq(string & log, const string & m, viewstamp last) {
439 auto ret = rsm_protocol::OK;
442 LOG("join request from " << m << "; last=(" << last.vid << "," << last.seqno << "), mylast=(" <<
443 last_myvs.vid << "," << last_myvs.seqno << ")");
444 if (cfg->ismember(m, vid_commit)) {
445 LOG(m << " is still a member -- nothing to do");
447 } else if (cfg->myaddr() != primary) {
448 LOG("but I, " << cfg->myaddr() << ", am not the primary, " << primary << "!");
449 ret = rsm_protocol::BUSY;
451 // We cache vid_commit to avoid adding m to a view which already contains
452 // m due to race condition
453 LOG("calling down to config layer");
454 unsigned vid_cache = vid_commit;
458 succ = cfg->add(m, vid_cache);
461 if (cfg->ismember(m, cfg->view_id())) {
463 LOG("ret " << ret << " log " << log);
465 LOG("failed; proposer couldn't add " << succ);
466 ret = rsm_protocol::BUSY;
473 // RPC handler: Responds with the list of known nodes for fall-back on a
476 rsm_client_protocol::status rsm::client_members(vector<string> &r, int) {
479 cfg->get_view(vid_commit, m);
480 m.push_back(primary);
482 LOG("return " << m << " m " << primary);
483 return rsm_client_protocol::OK;
486 // if primary is member of new view, that node is primary
487 // otherwise, the lowest number node of the previous view.
488 // caller should hold rsm_mutex
489 void rsm::set_primary(unsigned vid) {
491 cfg->get_view(vid, c);
492 cfg->get_view(vid - 1, p);
493 VERIFY (c.size() > 0);
495 if (isamember(primary,c)) {
496 LOG("primary stays " << primary);
500 VERIFY(p.size() > 0);
501 for (unsigned i = 0; i < p.size(); i++) {
502 if (isamember(p[i], c)) {
504 LOG("primary is " << primary);
511 bool rsm::amiprimary() {
513 return primary == cfg->myaddr() && !inviewchange;
517 // Test RPCs -- simulate partitions and failures
519 void rsm::net_repair(bool heal, lock &/*rsm_mutex_lock*/) {
521 cfg->get_view(vid_commit, m);
522 for (unsigned i = 0; i < m.size(); i++) {
523 if (m[i] != cfg->myaddr()) {
525 LOG("member " << m[i] << " " << heal);
526 if (h.safebind()) h.safebind()->set_reachable(heal);
529 rsmrpc->set_reachable(heal);
532 rsm_test_protocol::status rsm::test_net_repairreq(rsm_test_protocol::status &r, int heal) {
534 LOG("heal " << heal << " (dopartition " <<
535 dopartition << ", partitioned " << partitioned << ")");
537 net_repair(heal, ml);
541 return r = rsm_test_protocol::OK;
544 // simulate failure at breakpoint 1 and 2
546 void rsm::breakpoint1() {
548 LOG("Dying at breakpoint 1 in rsm!");
553 void rsm::breakpoint2() {
555 LOG("Dying at breakpoint 2 in rsm!");
560 void rsm::partition1(lock & rsm_mutex_lock) {
562 net_repair(false, rsm_mutex_lock);
568 rsm_test_protocol::status rsm::breakpointreq(rsm_test_protocol::status &r, int b) {
569 r = rsm_test_protocol::OK;
571 LOG("breakpoint " << b);
572 if (b == 1) break1 = true;
573 else if (b == 2) break2 = true;
574 else if (b == 3 || b == 4) cfg->breakpoint(b);
575 else r = rsm_test_protocol::ERR;